首页 > 数据分析

pandas 强制类型转换 df.astype实例

时间:2020-07-21 数据分析 查看: 1345

废话不多说,大家还是直接看代码吧!

import pandas as pd
from matplotlib import pyplot as plt
from datetime import datetime
filename='sitka_weather_2014.csv'

df=pd.read_csv(filename)
print(df.dtypes)

df[' Min Humidity']=df[' Min Humidity'].astype('float64')
df=df.astype({'Max Humidity':'float64','Max Dew PointF':'float64'})

print('*'*44)
print(df.dtypes)

补充知识:python pandas转换数据类型astype(int)报错问题

代码:

import pandas as pd
a = pd.Series([‘1.11',‘2.22'])
print(a)
a = a.astype(int)
print(a)

报错

ValueError: invalid literal for int() with base 10: ‘1.11'

代码:

import pandas as pd
a = pd.Series([‘1.11',‘2.22'])
print(a)
a = a.astype(float).astype(int)
print(a)

输出:

0 1.11
1 2.22
dtype: object
0 1
1 2
dtype: int32

原因:

astype(int)在转换数据类型时,直接将字符串转为整型数据字符串中的小数点会被认为是特殊字符而报错;

先转成浮点数据,astype(int)会把数据当做数字来进行转换。

以上这篇pandas 强制类型转换 df.astype实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持python博客。

展开全文
上一篇:pandas分组聚合详解
下一篇:python数据分析工具之 matplotlib详解
输入字:
相关知识
python数据挖掘使用Evidently创建机器学习模型仪表板

在本文中,我们将探索 Evidently 并创建交互式报告/仪表板。有需要的朋友欢迎大家收藏学习,希望能够有所帮助,祝大家多多进步早日升职加薪

Python多进程共享numpy 数组的方法

本文章主要介绍了Python多进程共享numpy 数组的方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

python数据分析近年比特币价格涨幅趋势分布

这篇文章主要为大家介绍了python分析近年来比特币价格涨幅趋势的数据分布,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步

python调用matlab的方法详解

这篇文章主要为大家介绍了python调用matlab,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助