时间:2020-07-21 数据分析 查看: 1097
一 前言
pandas学到分组迭代,那么基础的pandas系列就学的差不多了,自我感觉不错,知识追寻者用pandas处理过一些数据,蛮好用的;
知识追寻者(Inheriting the spirit of open source, Spreading technology knowledge;)
二 分组
2.1 数据准备
# -*- coding: utf-8 -*-
import pandas as pd
import numpy as np
frame = pd.DataFrame({
'user' : ['zszxz','craler','rose','zszxz','rose'],
'hobby' : ['reading','running','hiking','reading','hiking'],
'price' : np.random.randn(5),
'number' : np.random.randn(5)
})
print(frame)
输出
user hobby price number
0 zszxz reading 0.275752 -0.075841
1 craler running -1.410682 0.259869
2 rose hiking -0.353269 -0.392659
3 zszxz reading 1.484604 0.659274
4 rose hiking -1.348315 2.492047
2.2 分组求均值
提取DataFrame中price 列,根据hobby列进行分组,最后对分好组的数据进行处理求均值;
# 是个生成器
group = frame['price'].groupby(frame['hobby'])
# 求均值
print(group.mean())
输出
hobby
hiking -0.850792
reading 0.880178
running -1.410682
Name: price, dtype: float64
Tip: 可以理解为 根据爱好分组,查询价格;查询的列必须是数字,否则求均值时会报异常
如果是根据多列分组则在groupby后面使用列表指定,并且调用求均值函数;输出的值将是分组列,均值结果;
group = frame['price'].groupby([frame['hobby'],frame['user']])
print(group.mean())
输出
hobby user
hiking rose 0.063972
reading zszxz 0.393164
running craler -1.395186
Name: price, dtype: float64
如果对整个DataFrame进行分组,则不再需要提取指定的列;
group = frame.groupby(frame['hobby'])
print(group.mean())
输出
hobby
hiking -0.116659 -0.316222
reading -0.651365 0.856299
running -0.282676 -0.585124
Tip: 求均值后,默认是对数字类型的数据进行分组求均值;非数字列自动忽略
2.3 分组求数量
分组求数量是统计分析中应用最为广泛的函数;如下示例中对DataFrame根据hobby分组,并且调用 size()函数统计个数;此方法常用的统计技巧;
group = frame.groupby(frame['hobby'])
print(group.size())
输出
hobby
hiking 2
reading 2
running 1
dtype: int64
2.4 分组迭代
当对groupby的列只有单个时(示例根据hobby进行分组),可以 使用 key , value 形式 对分组后的数据进行迭代,其中key 是分组的名称,value是分组的数据;
group = frame['price'].groupby(frame['hobby'])
for key , data in group:
print(key)
print(data)
输出
hiking
2 -0.669410
4 -0.246816
Name: price, dtype: float64
reading
0 1.362191
3 -0.052538
Name: price, dtype: float64
running
1 0.8963
Name: price, dtype: float64
当对多个列进行分组迭代时,有多少列则需要指定多少个key与其对应,key可以是任何不重复的变量名称
group = frame['price'].groupby([frame['hobby'],frame['user']])
for (key1, key2) , data in group:
print(key1,key2)
print(data)
输出
hiking rose
2 -0.019423
4 -2.642912
Name: price, dtype: float64
reading zszxz
0 0.405016
3 0.422182
Name: price, dtype: float64
running craler
1 -0.724752
Name: price, dtype: float64
2.5 分组数据转为字典
可以对分组后的数据转为字典;
dic = dict(list(frame.groupby(frame['hobby'])))
print(dic)
输出
{'hiking': user hobby price number
2 rose hiking 0.351633 0.523272
4 rose hiking 0.800039 0.331646,
'reading': user hobby price number
0 zszxz reading -0.074857 -0.928798
3 zszxz reading 0.666925 0.606706,
'running': user hobby price number
1 craler running -2.525633 0.895776}
获取key
print(dic['hiking'])
输出
user hobby price number
2 rose hiking 0.382225 -0.242055
4 rose hiking 1.055785 -0.328943
2.6 分组取值
对frame进行hobby分组,就算查询 price 的均值;返回Series;
mean = frame.groupby('hobby')['price'].mean()
print(type(mean))
print(mean)
输出
hobby
hiking 0.973211
reading -1.393790
running -0.286236
Name: price, dtype: float64
Tip: frame.groupby(‘hobby')[‘price'] 与 frame[‘price'] .groupby(frame[‘hobby']) 相等
如果想要返回 DataFrame
mean = frame.groupby('hobby')[['price']].mean()
print(type(mean))
print(mean)
输出
price
hobby
hiking 0.973211
reading -1.393790
running -0.286236
2.5 Series作为分组
也可以传入Series作为DataFrame的分组列
ser = pd.Series(['hiking','reading','running'])
data = frame.groupby(ser).mean()
print(data)
输出
price number
hiking 1.233396 0.313839
reading -0.298887 0.982853
running -0.797734 -1.230811
Tip: 本质上都是数组,除了Series,还可以使用字典,列表,数组,函数作为分组列
2.6 通过索引层级分组
传入级别的名称即可实现层级化索引分组
# 创建2个列,并且指定名称
columns = pd.MultiIndex.from_arrays([['Python', 'Java', 'Python', 'Java', 'Python'],
['a', 'b', 'a', 'b', 'c']], names=['language', 'alpha'])
frame = pd.DataFrame(np.random.randint(1, 10, (5, 5)), columns=columns)
print(frame)
# 根据language进行分组
print(frame.groupby(level='language', axis=1).sum())
# 根据index进行分组
print(frame.groupby(level='alpha', axis=1).sum())
frame输出如下
language Python Java Python Java Python
alpha a b a b c
0 9 9 7 4 5
1 3 4 7 6 6
2 6 6 3 9 1
3 1 1 8 5 2
4 6 5 9 5 4
language分组如下
language Java Python
0 13 21
1 10 16
2 15 10
3 6 11
4 10 19
alpha分组如下
alpha a b c
0 16 13 5
1 10 10 6
2 9 15 1
3 9 6 2
4 15 10 4
到此这篇关于pandas分组聚合详解的文章就介绍到这了,更多相关pandas 分组聚合内容请搜索python博客以前的文章或继续浏览下面的相关文章希望大家以后多多支持python博客!