时间:2021-12-20 数据分析 查看: 3466
Python中提供了list容器,可以当作数组使用。但列表中的元素可以是任何对象,因此列表中保存的是对象的指针,这样一来,为了保存一个简单的列表[1,2,3]。就需要三个指针和三个整数对象。对于数值运算来说,这种结构显然不够高效。
Python虽然也提供了array模块,但其只支持一维数组,不支持多维数组(在TensorFlow里面偏向于矩阵理解),也没有各种运算函数。因而不适合数值运算。
NumPy的出现弥补了这些不足。
引用:https://zhuanlan.zhihu.com/p/32513483
需要用到 numpy 时往往是数据量较大的场景,如果直接复制会造成大量内存浪费。共享 numpy 数组则是通过上面一节的 Array 实现,再用 numpy.frombuffer 以及 reshape 对共享的内存封装成 numpy 数组,代码如下:
# encoding:utf8
import ctypes
import os
import multiprocessing
import numpy as np
NUM_PROCESS = multiprocessing.cpu_count()
def worker(index):
main_nparray = np.frombuffer(shared_array_base, dtype=ctypes.c_double)
main_nparray = main_nparray.reshape(NUM_PROCESS, 10)
pid = os.getpid()
main_nparray[index, :] = pid
return pid
if __name__ == "__main__":
shared_array_base = multiprocessing.Array(
ctypes.c_double, NUM_PROCESS * 10, lock=False)
pool = multiprocessing.Pool(processes=NUM_PROCESS)
result = pool.map(worker, range(NUM_PROCESS))
main_nparray = np.frombuffer(shared_array_base, dtype=ctypes.c_double)
main_nparray = main_nparray.reshape(NUM_PROCESS, 10)
print( main_nparray )
运行结果:
到此这篇关于Python多进程共享numpy 数组的方法的文章就介绍到这了,更多相关Python多进程共享numpy 数组内容请搜索python博客以前的文章或继续浏览下面的相关文章希望大家以后多多支持python博客!