时间:2020-06-25 数据分析 查看: 1420
pyetl是一个纯python开发的ETL框架, 相比sqoop, datax 之类的ETL工具,pyetl可以对每个字段添加udf函数,使得数据转换过程更加灵活,相比专业ETL工具pyetl更轻量,纯python代码操作,更加符合开发人员习惯
安装
pip3 install pyetl
使用示例
数据库表之间数据同步
from pyetl import Task, DatabaseReader, DatabaseWriter
reader = DatabaseReader("sqlite:///db1.sqlite3", table_name="source")
writer = DatabaseWriter("sqlite:///db2.sqlite3", table_name="target")
Task(reader, writer).start()
数据库表到hive表同步
from pyetl import Task, DatabaseReader, HiveWriter2
reader = DatabaseReader("sqlite:///db1.sqlite3", table_name="source")
writer = HiveWriter2("hive://localhost:10000/default", table_name="target")
Task(reader, writer).start()
数据库表同步es
from pyetl import Task, DatabaseReader, ElasticSearchWriter
reader = DatabaseReader("sqlite:///db1.sqlite3", table_name="source")
writer = ElasticSearchWriter(hosts=["localhost"], index_name="tartget")
Task(reader, writer).start()
原始表目标表字段名称不同,需要添加字段映射
添加
# 原始表source包含uuid,full_name字段
reader = DatabaseReader("sqlite:///db.sqlite3", table_name="source")
# 目标表target包含id,name字段
writer = DatabaseWriter("sqlite:///db.sqlite3", table_name="target")
# columns配置目标表和原始表的字段映射关系
columns = {"id": "uuid", "name": "full_name"}
Task(reader, writer, columns=columns).start()
字段的udf映射,对字段进行规则校验、数据标准化、数据清洗等
# functions配置字段的udf映射,如下id转字符串,name去除前后空格
functions={"id": str, "name": lambda x: x.strip()}
Task(reader, writer, columns=columns, functions=functions).start()
继承Task类灵活扩展ETL任务
import json
from pyetl import Task, DatabaseReader, DatabaseWriter
class NewTask(Task):
reader = DatabaseReader("sqlite:///db.sqlite3", table_name="source")
writer = DatabaseWriter("sqlite:///db.sqlite3", table_name="target")
def get_columns(self):
"""通过函数的方式生成字段映射配置,使用更灵活"""
# 以下示例将数据库中的字段映射配置取出后转字典类型返回
sql = "select columns from task where name='new_task'"
columns = self.writer.db.read_one(sql)["columns"]
return json.loads(columns)
def get_functions(self):
"""通过函数的方式生成字段的udf映射"""
# 以下示例将每个字段类型都转换为字符串
return {col: str for col in self.columns}
def apply_function(self, record):
"""数据流中对一整条数据的udf"""
record["flag"] = int(record["id"]) % 2
return record
def before(self):
"""任务开始前要执行的操作, 如初始化任务表,创建目标表等"""
sql = "create table destination_table(id int, name varchar(100))"
self.writer.db.execute(sql)
def after(self):
"""任务完成后要执行的操作,如更新任务状态等"""
sql = "update task set status='done' where name='new_task'"
self.writer.db.execute(sql)
NewTask().start()
目前已实现Reader和Writer列表
Reader | 介绍 |
---|---|
DatabaseReader | 支持所有关系型数据库的读取 |
FileReader | 结构化文本数据读取,如csv文件 |
ExcelReader | Excel表文件读取 |
Writer | 介绍 |
---|---|
DatabaseWriter | 支持所有关系型数据库的写入 |
ElasticSearchWriter | 批量写入数据到es索引 |
HiveWriter | 批量插入hive表 |
HiveWriter2 | Load data方式导入hive表(推荐) |
FileWriter | 写入数据到文本文件 |
项目地址pyetl
总结
到此这篇关于python ETL工具 pyetl的文章就介绍到这了,更多相关python ETL工具 pyetl内容请搜索python博客以前的文章或继续浏览下面的相关文章希望大家以后多多支持python博客!