首页 > 数据分析

pandas使用之宽表变窄表的实现

时间:2020-07-19 数据分析 查看: 1137

我就废话不多说了,还是直接看代码吧!

import pandas as pd
# 伪造一些数据
fake_data = {'subject':['math', 'english'],
      'A': [88, 90],
      'B': [70, 80],
      'C': [60, 78]}

# 宽表
test = pd.DataFrame(fake_data, columns=['subject', 'A', 'B', 'C'])
test
subjectABC
0math887060
1english908078

# 转换为窄表
pd.melt(test, id_vars=['subject'])

subjectvariablevalue
0mathA88
1englishA90
2mathB70
3englishB80
4mathC60
5englishC78

补充知识:pandas从单条目数据集生成宽表

需求

场景

从医院数据库中导出了大量的体检数据,但体检数据表中,每一行代表某人某次体检的某一项体检的结果。目的想将每一个人的每一次体检结果作为一行存储,每一列为体检项。

示例

StuID Type Num
0 111021 Math 89
1 111021 English 93
2 312983 English 91
3 314621 English 82
4 314621 Math 92
5 112341 Math 82

目的:转换成如下表格

StuID English Math
0 111021 93 89
1 312983 91 NaN
2 314621 82 92
3 112341 NaN 82

方案一

具体代码如下

#将'B'列的类别调整为行。
#1
num = df[~df.duplicated(subset=['StuID'])].loc[:,'StuID'].to_list()
#2
result_df = pd.DataFrame({'StuID': np.array(num)},columns=['StuID','English','Math'])
#3
for i in df.index:
  t = df.loc[i,'Type']
  num = df.loc[i,'StuID']
  result_df.loc[result_df['StuID'] == num,[t]] = df.loc[i,'Num']
print(result_df)

结果

以上这篇pandas使用之宽表变窄表的实现就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持python博客。

展开全文
上一篇:pandas数据拼接的实现示例
下一篇:Python Scrapy框架:通用爬虫之CrawlSpider用法简单示例
输入字:
相关知识
python数据挖掘使用Evidently创建机器学习模型仪表板

在本文中,我们将探索 Evidently 并创建交互式报告/仪表板。有需要的朋友欢迎大家收藏学习,希望能够有所帮助,祝大家多多进步早日升职加薪

Python多进程共享numpy 数组的方法

本文章主要介绍了Python多进程共享numpy 数组的方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

python数据分析近年比特币价格涨幅趋势分布

这篇文章主要为大家介绍了python分析近年来比特币价格涨幅趋势的数据分布,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步

python调用matlab的方法详解

这篇文章主要为大家介绍了python调用matlab,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助