首页 > 数据分析

numpy库reshape用法详解

时间:2020-07-18 数据分析 查看: 1235

numpy.reshape(重塑)

给数组一个新的形状而不改变其数据

numpy.reshape(a, newshape, order='C')参数:

a:array_like
要重新形成的数组。
newshape:int或tuple的整数
新的形状应该与原始形状兼容。如果是整数,则结果将是该长度的1-D数组。一个形状维度可以是-1。在这种情况下,从数组的长度和其余维度推断该值。
order:{'C','F','A'}可选
使用此索引顺序读取a的元素,并使用此索引顺序将元素放置到重新形成的数组中。'C'意味着使用C样索引顺序读取/写入元素,最后一个轴索引变化最快,回到第一个轴索引变化最慢。'F'意味着使用Fortran样索引顺序读取/写入元素,第一个索引变化最快,最后一个索引变化最慢。注意,'C'和'F'选项不考虑底层数组的内存布局,而只是参考索引的顺序。'A'意味着在Fortran类索引顺序中读/写元素,如果a 是Fortran 在内存中连续的,否则为C样顺序。

返回:

reshaped_array:ndarray
如果可能,这将是一个新的视图对象; 否则,它将是一个副本。注意,不能保证返回数组的内存布局(C-或Fortran-连续)。

样例(转载):

1.引入numpy,名称为np

2.接下来创建一个数组a,可以看到这是一个一维的数组

3.使用reshape()方法来更改数组的形状,可以看到看数组d成为了一个二维数组

4.通过reshape生成的新数组和原始数组公用一个内存,也就是说,假如更改一个数组的元素,另一个数组也将发生改变

5.同理还可以得到一个三维数组

6.形状变化的原则是数组元素不能发生改变,比如这样写就是错误的,因为数组元素发生了变化

到此这篇关于numpy库reshape用法详解的文章就介绍到这了,更多相关numpy reshape用法内容请搜索python博客以前的文章或继续浏览下面的相关文章希望大家以后多多支持python博客!

展开全文
上一篇:Python numpy中矩阵的基本用法汇总
下一篇:python matplotlib实现将图例放在图外
输入字:
相关知识
python数据挖掘使用Evidently创建机器学习模型仪表板

在本文中,我们将探索 Evidently 并创建交互式报告/仪表板。有需要的朋友欢迎大家收藏学习,希望能够有所帮助,祝大家多多进步早日升职加薪

Python多进程共享numpy 数组的方法

本文章主要介绍了Python多进程共享numpy 数组的方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

python数据分析近年比特币价格涨幅趋势分布

这篇文章主要为大家介绍了python分析近年来比特币价格涨幅趋势的数据分布,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步

python调用matlab的方法详解

这篇文章主要为大家介绍了python调用matlab,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助