时间:2021-02-23 数据分析 查看: 1193
这篇文章主要介绍了Pandas数据离散化原理及实例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
为什么要离散化
什么是数据的离散化
连续属性的离散化就是在连续属性的值域上,将值域划分为若干个离散的区间,最后用不同的符号或整数 值代表落在每个子区间中的属性值
分箱
案例
1.先读取股票的数据,筛选出p_change数据
data = pd.read_csv("./data/stock_day.csv")
p_change= data['p_change']
2.将股票涨跌幅数据进行分组
使用的工具:
# 自行分组
qcut = pd.qcut(p_change, 10)
# 计算分到每个组数据个数
qcut.value_counts()
自定义区间分组:
# 自己指定分组区间
bins = [-100, -7, -5, -3, 0, 3, 5, 7, 100]
p_counts = pd.cut(p_change, bins)
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持python博客。