首页 > 数据分析

关于numpy数组轴的使用详解

时间:2021-01-20 数据分析 查看: 966

概述

按照图一中aixs=0,对aixs=0上下对应的数据进行相加在学习numpy的时候,最难理解的就是轴的概念,我们知道坐标系中有轴的概念,那么两个轴是否有关联呢?为了便于理解,特写此博客进行梳理。

正文

首先数组的维数比较好理解,下面我们创建一个数组:

import numpy as np
# 创建一个三维数组
b=np.arange(24).reshape(4,3,2)

打印结果:

[[[ 0 1]
 [ 2 3]
 [ 4 5]]

 [[ 6 7]
 [ 8 9]
 [10 11]]

 [[12 13]
 [14 15]
 [16 17]]

b 是一个三维数组:

第一维有三个元素

第二维有三个元素

第三维有四个元素

上面的数据也可以用下列方式展示(图一)

对于下面按照aixs=0进行sum:

print(b.sum(0))

按照图一中aixs=0,对aixs=0上下对应的数据进行相加,数据从(4,3,2)降维到(3,2)

[[0+ 6+12+18=36  1+ 7+13+19=40]
 [2+ 8+14+20=44  3+ 9+15+21=48]
 [4+10+16+22=52  5+11+17+23=56]]

对于下面按照aixs=1进行sum:

print(b.sum(1))

按照图一中aixs=1,按照比1小的轴对数据进行划分(即aixs=0),然后对划分的每一部分中数据中的aixs=1上下对应的数据进行相加,数据从(4,3,2)降维到(4,2)

[[ 0+ 2+ 4=6  1+ 3+ 5=9]
 [ 6+ 8+10=24 7+ 9+11=27]
 [12+14+16=42 13+15+17=45]
 [18+20+22=60 19+21+23+63]]

对于下面按照aixs=2进行sum:

print(b.sum(2))

按照图一中aixs=2,按照比2小的轴对数据进行划分(即aixs=0,aixs=1),然后对划分的每一部分中数据中的aixs=2上下对应的数据进行相加,数据从(4,3,2)降维到(4,3)

[[ 0+ 1=1  2+ 3=5  4+ 5=9]
 [ 6+ 7=13 8+ 9=17 10+11=21]
 [12+13=25 14+15=29 16+17=33]
 [18+19=37 20+21=41 22+23=45]]

总结:

aixs的范围是0到数组的维数(不包括维数)

轴的划分是按照维数进行

相加时按照轴进行对象相加,但是不能跨越比当前轴低的轴

以上这篇关于numpy数组轴的使用详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持python博客。

展开全文
上一篇:numpy 声明空数组详解
下一篇:关于numpy.where()函数 返回值的解释
输入字:
相关知识
python数据挖掘使用Evidently创建机器学习模型仪表板

在本文中,我们将探索 Evidently 并创建交互式报告/仪表板。有需要的朋友欢迎大家收藏学习,希望能够有所帮助,祝大家多多进步早日升职加薪

Python多进程共享numpy 数组的方法

本文章主要介绍了Python多进程共享numpy 数组的方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

python数据分析近年比特币价格涨幅趋势分布

这篇文章主要为大家介绍了python分析近年来比特币价格涨幅趋势的数据分布,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步

python调用matlab的方法详解

这篇文章主要为大家介绍了python调用matlab,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助