首页 > 数据分析

python产生模拟数据faker库的使用详解

时间:2020-12-01 数据分析 查看: 832

简介

使用faker可以获取很多模拟数据,如:姓名、电话、地址、银行、汽车、条形码、公司、信用卡、email、user_agen等等

学会使用这个库,再也不用为制造假数据发愁了。。。。。。

同时,使用起来非常简单,只需要安装,导入库,并创建实例,即可使用,如下:

主要的方法分类

如上面例子,每次调用 fake 实例的 name()方法时,都会产生不同随机姓名。fake 实例还有很多方法可用,这些方法分为以下几类:

  • address 地址
  • person 人物类:性别、姓名等
  • barcode 条码类
  • color 颜色类
  • company 公司类:公司名、公司email、公司名前缀等
  • credit_card 银行卡类:卡号、有效期、类型等
  • currency 货币
  • date_time 时间日期类:日期、年、月等
  • file 文件类:文件名、文件类型、文件扩展名等
  • internet 互联网类
  • job 工作
  • lorem 乱数假文
  • misc 杂项类
  • phone_number 手机号码类:手机号、运营商号段
  • python python数据
  • profile 人物描述信息:姓名、性别、地址、公司等
  • ssn 社会安全码(身份证号码)
  • user_agent 用户代理

address 地址

>>> fake.country() # 国家
'奥地利' 
>>> fake.city() # 城市
'郑州市'
>>> fake.city_suffix() # 城市的后缀,中文是:市或县
'市'
>>> fake.address() # 地址
'河北省巢湖县怀柔南宁路f座 169812'
>>> fake.street_address() # 街道
'邯郸路W座'
>>> fake.street_name() # 街道名
'合肥路'
>>> fake.postcode() # 邮编
'314548'
>>> fake.latitude() # 维度
Decimal('68.0228435')
>>> fake.longitude() # 经度
Decimal('155.964341')

person 人物

>>> fake.name() # 姓名
'单玉珍'
>>> fake.last_name() # 姓
'潘'
>>> fake.first_name() # 名
'琴'
>>> fake.name_male() # 男性姓名
'官平'
>>> fake.last_name_male() # 男性姓
'安'
>>> fake.first_name_male() # 男性名
'文'
>>> fake.name_female() # 女性姓名
'许颖'

barcode 条码

>>> fake.ean8() # 8位条码
'12771363'
>>> fake.ean13() # 13位条码
'9133134950963'
>>> fake.ean(length=8) # 自定义位数条码,只能选8或者13
'20417161'

color 颜色

>>> fake.hex_color() # 16进制表示的颜色
'#671f6d'
>>> fake.rgb_css_color() # css用的rgb色
'rgb(237,74,237)'
>>> fake.rgb_color() # 表示rgb色的字符串
'208,102,218'
>>> fake.color_name() # 颜色名字
'Brown'
>>> fake.safe_hex_color() #安全16进制色
'#ee4400'
>>> fake.safe_color_name() # 安全颜色名字
'maroon'

company 公司

>>> fake.company() # 公司名
'时空盒数字科技有限公司'
>>> fake.company_suffix() # 公司名后缀
'科技有限公司'

credit_card 银行信用卡

>>> fake.credit_card_number(card_type=None) # 卡号
'375325478746231'
>>> fake.credit_card_provider(card_type=None) # 卡的提供者
'VISA 13 digit'
>>> fake.credit_card_security_code(card_type=None)# 卡的安全密码
'450'
>>> fake.credit_card_expire() # 卡的有效期
'04/22'
>>> fake.credit_card_full(card_type=None) # 完整卡信息
'Maestro\n秀芳 商\n502001016117 04/27\nCVV: 144\n'

currency 货币

>>> fake.currency_code() # 货币代码
'HNL'

date_time 时间日期

>>> fake.date_time(tzinfo=None) # 随机日期时间
datetime.datetime(2001, 3, 18, 17, 57, 44)
>>> fake.iso8601(tzinfo=None) # 以iso8601标准输出的日期
'1973-11-16T22:58:37'

>>> fake.date_time_this_month(before_now=True, after_now=False, tzinfo=None) # 本月的某个日期
datetime.datetime(2017, 11, 1, 14, 33, 48)
>>> fake.date_time_this_year(before_now=True, after_now=False, tzinfo=None) # 本年的某个日期
datetime.datetime(2017, 3, 2, 13, 55, 31)
>>> fake.date_time_this_decade(before_now=True, after_now=False, tzinfo=None) # 本年代内的一个日期
datetime.datetime(2010, 3, 26, 6, 33, 23)
>>> fake.date_time_this_century(before_now=True, after_now=False, tzinfo=None) # 本世纪一个日期
datetime.datetime(2015, 7, 21, 19, 27, 53)
>>> fake.date_time_between(start_date="-30y", end_date="now", tzinfo=None) # 两个时间间的一个随机时间
datetime.datetime(2005, 12, 3, 17, 17, 15)

>>> fake.timezone() # 时区
'America/Guatemala'
>>> fake.time(pattern="%H:%M:%S") # 时间(可自定义格式)
'11:21:52'
>>> fake.am_pm() # 随机上午下午
'PM'
>>> fake.month() # 随机月份
'02'
>>> fake.month_name() # 随机月份名字
'August'
>>> fake.year() # 随机年
'1974'
>>> fake.day_of_week() # 随机星期几
'Sunday'
>>> fake.day_of_month() # 随机月中某一天
'02'
>>> fake.time_delta() # 随机时间延迟
datetime.timedelta(13371, 27637)
>>> fake.date_object() # 随机日期对象
datetime.date(1983, 1, 26)
>>> fake.time_object() # 随机时间对象
datetime.time(17, 8, 56)
>>> fake.unix_time() # 随机unix时间(时间戳)
1223246848
>>> fake.date(pattern="%Y-%m-%d") # 随机日期(可自定义格式)
'1984-04-20'
>>> fake.date_time_ad(tzinfo=None) # 公元后随机日期
datetime.datetime(341, 9, 11, 8, 6, 9)

file 文件

>>> fake.file_name(category="image", extension="png") # 文件名(指定文件类型和后缀名)
'增加.png'
>>> fake.file_name() # 随机生成各类型文件
'提供.pdf'
>>> fake.file_extension(category=None) # 文件后缀
'txt'
>>> fake.mime_type(category=None) # mime-type
'image/png'

internet 互联网

>>> fake.ipv4(network=False) # ipv4地址
'104.225.105.10'
>>> fake.ipv6(network=False) # ipv6地址
'dea6:ca11:39d0:b49f:fff1:82f1:bf88:698b'
>>> fake.uri_path(deep=None) # uri路径
'search/categories'
>>> fake.uri_extension() # uri扩展名
'.htm'
>>> fake.uri() # uri
'https://www.wei.com/terms/'
>>> fake.url() # url
'http://zheng.org/'
>>> fake.image_url(width=None, height=None) # 图片url
'https://www.lorempixel.com/700/990'
>>> fake.domain_word() # 域名主体
'hu'
>>> fake.domain_name() # 域名
'hu.cn'
>>> fake.tld() # 域名后缀
'com'
>>> fake.user_name() # 用户名
'xia13'
>>> fake.user_agent() # UA
'Opera/8.33.(Windows NT 5.1; an-ES) Presto/2.9.171 Version/10.00'
>>> fake.mac_address() # MAC地址
'd6:38:cc:2a:76:b2'
>>> fake.safe_email() # 安全邮箱
'mingli@example.net'
>>> fake.free_email() # 免费邮箱
'tao44@gmail.com'
>>> fake.company_email() # 公司邮箱
'jingzhong@wang.cn'
>>> fake.email() # 邮箱
'changjun@hao.com'

job 工作

>>> fake.job()#工作职位
'Dealer'
>>> fake.job() 
'Musician'

lorem 乱数假文

>>> fake.text(max_nb_chars=200) # 随机生成一篇文章
'语言无法应用为什一点国内.要求完成如何世界电脑发布作品.经济不同教育个人科技全国.\n在线学生发布信息上海状态.\n联系一次通过其实介绍世界.增加也是使用成功那个.\n商品免费管理公司.留言自己这种内容.\n次数内容知道这样女人感觉.操作他的生产出现如何报告文章只有.\n个人文化中心不能发布最新.质量一下提高.感觉最大工具表示最后计划.这是还有次数结果其实特别.'

>>> fake.word() # 随机单词
'能力'
>>> fake.words(nb=3) # 随机生成几个字
['国家', '经营', '结果']
>>> fake.sentence(nb_words=6, variable_nb_words=True) # 随机生成一个句子
'重要更多我们作品地方增加.'
>>> fake.sentences(nb=3) # 随机生成几个句子
['制作上海学生.', '方式汽车一样技术帮助欢迎.', '说明一种深圳经营电话帖子.']
>>> fake.paragraph(nb_sentences=3, variable_nb_sentences=True) # 随机生成一段文字(字符串)
'非常环境位置有限发展首页行业.情况对于出现部门这种觉得.产品以后因为虽然由于日本不同.'

>>> fake.paragraphs(nb=3) # 随机生成成几段文字(列表)
['就是发布要求有关这里国际.美国设备深圳经营.首页也是支持报告.', '决定可是只有发现开始一直.最后有些项目正在深圳关系决定.下载注册图片更多进行他的那些.', '必须他们发生数据准备联系.同时这样内容学校精华.']

misc 杂项

>>> fake.binary(length=10) # 随机二进制字符串(可指定长度)
b'U\xa9@\x1e\x96\xe7\xca\x82\x14f'

>>> fake.language_code()  # 随机语言代码
'tg'

>>> fake.md5(raw_output=False) # 随机md5,16进制字符串
'cc4feebe419791332bbcff5e0fdf084a'

>>> fake.sha1(raw_output=False) # 随机sha1,16进制字符串
'8ac0e9980f880860b6e45ae6fd257cc847b7ae8d'

>>> fake.sha256(raw_output=False)  # 随机sha256,16进制字符串
'033151f173f4a389e38e7df2363d89741f752c474e7bdfa2ee0a794bf0b505b5'

>>> fake.boolean(chance_of_getting_true=50) # 随机真假值(得到True的几率是50%)
False

>>> fake.null_boolean() # 随机真假值和null
>>> fake.null_boolean()
True

>>> fake.password(length=10, special_chars=True, digits=True, upper_case=True, lower_case=True) # 随机密码(可指定密码策略)
'F%722TJg_U'
>>> fake.locale() # 随机本地代码
'hy_AM'
>>> fake.uuid4() # 随机uuid
'a50d17e7-bc4f-37a3-27b3-04a24fdd0055'
>>>

phone_number 电话号码

>>> fake.phone_number() # 手机号码
'13334603608'
>>> fake.phonenumber_prefix() # 运营商号段,手机号码前三位
158

python python数据

>>> fake.pyint() # 随机int
7775
>>> fake.pyfloat(left_digits=None, right_digits=None, positive=False) # 浮点数
-84901.5586333
>>> fake.pydecimal(left_digits=None, right_digits=None, positive=False) # 随机高精度数
Decimal('-12273687068527.0')
>>> fake.pystr(min_chars=None, max_chars=20) # 随机字符串(可指定长度)
'cblutNKFIyegfcHPrjzx'
>>> fake.pybool() # 随机bool值
True

>>> fake.pyiterable(nb_elements=10, variable_nb_elements=True) # 随机iterable
['ODfeVvcbAjPDBGwzljQw', 'https://www.tan.cn/list/category/homepage.php', 'YQlrsFkBieyKYaXlCljJ', Decimal('42778240911787.2'), Decimal('957411812.6383'), 'TGbqZufoiUXLQTZDrVcP', 'http://yan.com/posts/tags/search/terms.php', 3.680492634254, 'min57@hotmail.com', datetime.datetime(2001, 8, 16, 6, 10, 49), 'xMMOjlETIgKGqVGTrChG', 'yong83@xu.cn']

>>> fake.pylist(nb_elements=10, variable_nb_elements=True ) # 随机生成一个list
['KXQMXAkcEMSLfnIZkgJb', 'BtowiRsuIqyyULnSYYdr', datetime.datetime(2011, 10, 10, 14, 44, 2), datetime.datetime(2008, 5, 10, 1, 38, 38), 'juan47@hotmail.com', 'QEsdUpEqHLpThyWCjkNx', Decimal('-801375867.9'), 'ucDyeZnHAXfZtkwdVUbR', 4707, datetime.datetime(1974, 8, 7, 1, 54, 29)]

>>> fake.pydict(nb_elements=10, variable_nb_elements=True)  # 随机字典
{'其中': 9047, '一直': 'AUiUjuqccIdVAWSqzDbW', '选择': 'ddong@hotmail.com', '开发': datetime.datetime(1972, 10, 20, 14, 14, 9), '电影': 'KYmolBhkjSRxloXXFUUT', '文化': 2681, '这里': 'uyang@yahoo.com', '不会': 'ZPkwuxWsrJSHMNuFiWEx', '社会': 'CiujeaZMZSuyYwuKzEdN'}

>>> fake.pyset(nb_elements=10, variable_nb_elements=True) # 随机set
{'bhe@hotmail.com', 'http://fu.cn/list/home.htm', 'MlJluVirRkofBnKNtphM', 296, 'ghoUSHkuEGmCzlJFKyHZ', datetime.datetime(2008, 4, 4, 2, 55, 4), 'AgbynHjdvwYpUkbMsfqr', 8751, 9649, 'tangguiying@hotmail.com', Decimal('5727570036.91'), 'HmDkExndcQIOaTtsSpsc', 'hjQlLLXuHVVzENEwoHJK'}

>>> fake.pytuple(nb_elements=10, variable_nb_elements=True)  # 随机tuple
('http://www.cai.com/index/', datetime.datetime(1973, 7, 28, 2, 12, 23), 'khltJQMYJvIDRMYodviZ', 'uJezUsEqiHaiFxwOPWvl', 'qojwZHyytBSQQavkDaTu', 'AHUCHYuVJTHnoSEuQDSY', 1012, 'uEYVuzeTlgVhrnCATfKw', 'https://www.zhou.com/categories/tags/main/', 'LbLSFZPeATtzHvbmYhGr')

>>> fake.pystruct() # 随机生成3个有10个元素的python数据结构
([datetime.datetime(1996, 10, 26, 7, 35, 26), datetime.datetime(1998, 2, 28, 17, 20, 8), 'qianming@hotmail.com', 'yEWMrpTqtAHfbxqldGrb', 'YgKYOnrjuthOrOXhlYIl', datetime.datetime(1994, 12, 10, 0, 55, 30), Decimal('-6865068.3'), 'SYHFHiFvJlRVPcCKumUM', -8619.4354, 'kwGipwcASeALLeKdaWBi'], {'同时': 'BvtYdkNTHwZNMiIIRwKd', '空间': 310959668662.457, '特别': 'PZQDBuuQWkcdryMloyKS', '音乐': Decimal('-7219015925.0'), '项目': 'https://www.zhou.cn/main.php', '回复': 30.408750841, '显示': 'etZMrsjXJgZpDfZWhpoS', '大小': 7472, '类型': 'OsjpxgLqnTcdVOlHoMoP', '什么': 'http://www.xia.com/posts/app/index/'}, {'朋友': {0: -415025.243093017, 1: [1799, 585, 'shu@hotmail.com'], 2: {0: 9980, 1: 'qnOnFTzGnsjvXGybBnMF', 2: ['http://zheng.cn/list/search/tag/faq.html', Decimal('964285276661463.0')]}}, '发生': {1: -5339010.6134, 2: [datetime.datetime(1987, 6, 23, 15, 21, 45), 'SvSpvKqTXlJvdQhHScwM', 'PZjKOYzZzoNVsHLRcARQ'], 3: {1: 'https://www.yan.cn/register/', 2: 2191, 3: ['HMHKQuLRBQaaAypRbtHU', datetime.datetime(2014, 5, 24, 3, 32, 36)]}}, '我的': {2: 'linxia@yahoo.com', 3: ['http://gu.com/about.php', 'DhzpWYkgLCobGSHDLXzI', 1420], 4: {2: datetime.datetime(1986, 2, 22, 4, 50, 12), 3: 'rRHwQQzkpAMBQxwVITBa', 4: [datetime.datetime(1984, 2, 6, 11, 52, 18), -73821572962388.7]}}, '全部': {3: 'uMQeeBXYNGhrHnAerdjp', 4: [323329.56403, 'kFvqXFhhtQPNtrOjKtxa', 'http://peng.cn/'], 5: {3: 'lcaoeisYIAOsuRjbOXia', 4: Decimal('-902407032449085.0'), 5: [2296, 'uyuWgnsONzLluXqXdASM']}}, '大小': {4: 'min63@hotmail.com', 5: [datetime.datetime(1991, 10, 22, 19, 21, 48), 'cDYEScdIokWuvGhRkWqs', 'XeDJojWyywFvzmWYaokO'], 6: {4: Decimal('-4167029.2915827'), 5: 4030, 6: [6372, 'xfRXXEFGsNQpeIGmbaHU']}}, '语言': {5: 'https://www.guo.cn/', 6: [6498, datetime.datetime(1981, 12, 3, 18, 4, 29), 42598100345.61], 7: {5: 'http://zheng.cn/', 6: -229316.268238, 7: ['https://www.qiao.cn/home/', 'GtaEXeVxjRnnkggjEguv']}}, '表示': {6: 'xcBvcGUWxdMhDqgzmhSd', 7: ['kwDaFhyTKqHajGSaNOMf', 8561, 5456], 8: {6: 'https://zhou.cn/tags/tag/faq.html', 7: 'IGayAZtTQVlSOasQwgug', 8: ['iCjwBzHfmPSLqAgmIOle', 70511766106574.5]}}, '电子': {7: 'http://www.lu.org/tags/posts/terms/', 8: [datetime.datetime(1978, 8, 11, 12, 16, 35), 'https://song.cn/main/categories/homepage.html', 'https://long.com/register.html'], 9: {7: 'nFJNhyMYBvfTxrYwYPUQ', 8: -2252757903.0, 9: ['GuJnhMEgXoMAivrgGZie', datetime.datetime(2014, 5, 29, 1, 17, 50)]}}, '的人': {8: 'WgHePwYSPgSiPllXpLlJ', 9: [1782, 'fSepbXwpvhiBphzDTDNC', -9117731.63459416], 10: {8: 5602, 9: 3664, 10: ['http://www.mao.com/search/tag/main/', Decimal('5579.7377')]}}, '不过': {9: 'rOfkDPTHvzKbfvQHbPNm', 10: [314.397, 'StqeLyXkIDKHfExSjggk', 'xiuyingkang@gao.cn'], 11: {9: 'BLKNdcccamYzBwRcMxlx', 10: 'yongduan@gong.org', 11: ['ZocoQHdbhaNloWALnzwt', 'eWVvvHurAlZZRxlYHZXi']}}})

profile 人物描述信息

>>> fake.profile(fields=None, sex=None) # 人物描述信息:姓名、性别、地址、公司等
{'job': 'Licensed conveyancer', 'company': '万迅电脑信息有限公司', 'ssn': '370684199902182726', 'residence': '福建省小红市南长广州街K座 406448', 'current_location': (Decimal('18.050895'), Decimal('-0.877117')), 'blood_group': '0-', 'website': ['https://www.yi.org/', 'https://www.hu.com/', 'https://www.yin.cn/'], 'username': 'minghuang', 'name': '后英', 'sex': 'F', 'address': '安徽省秀荣市璧山嘉禾路T座 954960', 'mail': 'czhong@hotmail.com', 'birthdate': '1975-03-09'}
>>> s = fake.simple_profile(sex="m") # 人物精简信息
>>> for i,v in s.items():
...   print(i,v)
...
username chao85
name 邴宇
sex M
address 陕西省东市朝阳廖街Y座 757661
mail xiazhang@gmail.com
birthdate 1996-09-20

ssn 社会安全码(身份证)

>>> fake.ssn() # 随机生成身份证号(18位)
'140100196612297997'
>>> len(fake.ssn())
18

user_agent 用户代理

常用在伪造浏览器信息

>>> fake.user_agent() # 伪造UA
'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/5361 (KHTML, like Gecko) Chrome/15.0.812.0 Safari/5361'

平台信息伪造

>>> fake.linux_platform_token()
'X11; Linux i686'
>>> fake.linux_processor()
'i686'
>>> fake.windows_platform_token()
'Windows CE'
>>> fake.mac_platform_token()
'Macintosh; Intel Mac OS X 10_7_4'
>>> fake.mac_processor()
'PPC'

浏览器伪造

>>> fake.internet_explorer() # IE浏览器
'Mozilla/5.0 (compatible; MSIE 5.0; Windows NT 6.1; Trident/4.0)'
>>> fake.opera() # opera浏览器
'Opera/9.37.(Windows 95; doi-IN) Presto/2.9.178 Version/10.00'
>>> fake.firefox() # firefox浏览器
'Mozilla/5.0 (Windows NT 5.0; te-IN; rv:1.9.2.20) Gecko/2015-09-28 13:29:05 Firefox/12.0'
>>> fake.safari() # safari浏览器
'Mozilla/5.0 (Windows; U; Windows NT 4.0) AppleWebKit/533.37.4 (KHTML, like Gecko) Version/5.0 Safari/533.37.4'
>>> fake.chrome() # chrome浏览器
'Mozilla/5.0 (Windows 98; Win 9x 4.90) AppleWebKit/5361 (KHTML, like Gecko) Chrome/14.0.866.0 Safari/5361'

自定义扩展

Faker 已经提供了足够丰富的信息生成,包括名字、手机号、邮箱地址、邮编等等。尽管如此,可能还是没有办法满足你的需求。这时,可以利用自定义扩展,引用外部的 provider,自定义你要的功能。

Faker 对象可以通过 add_provider 方法将自定义的 Provider 添加到对象中,自定义的 Provider 需要继承自 BaseProvider。

from faker import Faker
fake = Faker()

# first, import a similar Provider or use the default one
from faker.providers import BaseProvider

# create new provider class
class MyProvider(BaseProvider):
  def foo(self):
    return 'bar'

# then add new provider to faker instance
fake.add_provider(MyProvider)

# now you can use:
print(fake.foo())

结果显示:

bar

随机控制

Faker 随机生成由 random.Random 驱动。其中,.random 属性返回 random.Random 对象。通过对该对象的操作,可以实现自定义的行为。

from faker import Faker
fake = Faker()
fake.random
fake.random.getstate()

安装:

pip install faker

使用:

from faker import Faker
fake = Faker()
for i in range(0,10):
  print(fake.name())

不做进一步的解释了哈,

更详细的请参见faker的文档地址:https://faker.readthedocs.io/en/master/#

到此这篇关于python产生模拟数据faker库的使用详解的文章就介绍到这了,更多相关python faker库内容请搜索python博客以前的文章或继续浏览下面的相关文章希望大家以后多多支持python博客!

展开全文
上一篇:Python基于Serializer实现字段验证及序列化
下一篇:Python中用xlwt制作表格实例讲解
输入字:
相关知识
python数据挖掘使用Evidently创建机器学习模型仪表板

在本文中,我们将探索 Evidently 并创建交互式报告/仪表板。有需要的朋友欢迎大家收藏学习,希望能够有所帮助,祝大家多多进步早日升职加薪

Python多进程共享numpy 数组的方法

本文章主要介绍了Python多进程共享numpy 数组的方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

python数据分析近年比特币价格涨幅趋势分布

这篇文章主要为大家介绍了python分析近年来比特币价格涨幅趋势的数据分布,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步

python调用matlab的方法详解

这篇文章主要为大家介绍了python调用matlab,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助