首页 > python教程

pytorch:实现简单的GAN示例(MNIST数据集)

时间:2020-11-17 python教程 查看: 1085

我就废话不多说了,直接上代码吧!

# -*- coding: utf-8 -*-
"""
Created on Sat Oct 13 10:22:45 2018
@author: www
"""

import torch
from torch import nn
from torch.autograd import Variable

import torchvision.transforms as tfs
from torch.utils.data import DataLoader, sampler
from torchvision.datasets import MNIST

import numpy as np

import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec

plt.rcParams['figure.figsize'] = (10.0, 8.0) # 设置画图的尺寸
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'

def show_images(images): # 定义画图工具
  images = np.reshape(images, [images.shape[0], -1])
  sqrtn = int(np.ceil(np.sqrt(images.shape[0])))
  sqrtimg = int(np.ceil(np.sqrt(images.shape[1])))

  fig = plt.figure(figsize=(sqrtn, sqrtn))
  gs = gridspec.GridSpec(sqrtn, sqrtn)
  gs.update(wspace=0.05, hspace=0.05)

  for i, img in enumerate(images):
    ax = plt.subplot(gs[i])
    plt.axis('off')
    ax.set_xticklabels([])
    ax.set_yticklabels([])
    ax.set_aspect('equal')
    plt.imshow(img.reshape([sqrtimg,sqrtimg]))
  return 

def preprocess_img(x):
  x = tfs.ToTensor()(x)
  return (x - 0.5) / 0.5

def deprocess_img(x):
  return (x + 1.0) / 2.0

class ChunkSampler(sampler.Sampler): # 定义一个取样的函数
  """Samples elements sequentially from some offset. 
  Arguments:
    num_samples: # of desired datapoints
    start: offset where we should start selecting from
  """
  def __init__(self, num_samples, start=0):
    self.num_samples = num_samples
    self.start = start

  def __iter__(self):
    return iter(range(self.start, self.start + self.num_samples))

  def __len__(self):
    return self.num_samples

NUM_TRAIN = 50000
NUM_VAL = 5000

NOISE_DIM = 96
batch_size = 128

train_set = MNIST('E:/data', train=True, transform=preprocess_img)

train_data = DataLoader(train_set, batch_size=batch_size, sampler=ChunkSampler(NUM_TRAIN, 0))

val_set = MNIST('E:/data', train=True, transform=preprocess_img)

val_data = DataLoader(val_set, batch_size=batch_size, sampler=ChunkSampler(NUM_VAL, NUM_TRAIN))

imgs = deprocess_img(train_data.__iter__().next()[0].view(batch_size, 784)).numpy().squeeze() # 可视化图片效果
show_images(imgs)

#判别网络
def discriminator():
  net = nn.Sequential(    
      nn.Linear(784, 256),
      nn.LeakyReLU(0.2),
      nn.Linear(256, 256),
      nn.LeakyReLU(0.2),
      nn.Linear(256, 1)
    )
  return net

#生成网络
def generator(noise_dim=NOISE_DIM):  
  net = nn.Sequential(
    nn.Linear(noise_dim, 1024),
    nn.ReLU(True),
    nn.Linear(1024, 1024),
    nn.ReLU(True),
    nn.Linear(1024, 784),
    nn.Tanh()
  )
  return net

#判别器的 loss 就是将真实数据的得分判断为 1,假的数据的得分判断为 0,而生成器的 loss 就是将假的数据判断为 1

bce_loss = nn.BCEWithLogitsLoss()#交叉熵损失函数

def discriminator_loss(logits_real, logits_fake): # 判别器的 loss
  size = logits_real.shape[0]
  true_labels = Variable(torch.ones(size, 1)).float()
  false_labels = Variable(torch.zeros(size, 1)).float()
  loss = bce_loss(logits_real, true_labels) + bce_loss(logits_fake, false_labels)
  return loss

def generator_loss(logits_fake): # 生成器的 loss 
  size = logits_fake.shape[0]
  true_labels = Variable(torch.ones(size, 1)).float()
  loss = bce_loss(logits_fake, true_labels)
  return loss

# 使用 adam 来进行训练,学习率是 3e-4, beta1 是 0.5, beta2 是 0.999
def get_optimizer(net):
  optimizer = torch.optim.Adam(net.parameters(), lr=3e-4, betas=(0.5, 0.999))
  return optimizer

def train_a_gan(D_net, G_net, D_optimizer, G_optimizer, discriminator_loss, generator_loss, show_every=250, 
        noise_size=96, num_epochs=10):
  iter_count = 0
  for epoch in range(num_epochs):
    for x, _ in train_data:
      bs = x.shape[0]
      # 判别网络
      real_data = Variable(x).view(bs, -1) # 真实数据
      logits_real = D_net(real_data) # 判别网络得分

      sample_noise = (torch.rand(bs, noise_size) - 0.5) / 0.5 # -1 ~ 1 的均匀分布
      g_fake_seed = Variable(sample_noise)
      fake_images = G_net(g_fake_seed) # 生成的假的数据
      logits_fake = D_net(fake_images) # 判别网络得分

      d_total_error = discriminator_loss(logits_real, logits_fake) # 判别器的 loss
      D_optimizer.zero_grad()
      d_total_error.backward()
      D_optimizer.step() # 优化判别网络

      # 生成网络
      g_fake_seed = Variable(sample_noise)
      fake_images = G_net(g_fake_seed) # 生成的假的数据

      gen_logits_fake = D_net(fake_images)
      g_error = generator_loss(gen_logits_fake) # 生成网络的 loss
      G_optimizer.zero_grad()
      g_error.backward()
      G_optimizer.step() # 优化生成网络

      if (iter_count % show_every == 0):
        print('Iter: {}, D: {:.4}, G:{:.4}'.format(iter_count, d_total_error.item(), g_error.item()))
        imgs_numpy = deprocess_img(fake_images.data.cpu().numpy())
        show_images(imgs_numpy[0:16])
        plt.show()
        print()
      iter_count += 1

D = discriminator()
G = generator()

D_optim = get_optimizer(D)
G_optim = get_optimizer(G)

train_a_gan(D, G, D_optim, G_optim, discriminator_loss, generator_loss)      

以上这篇pytorch:实现简单的GAN示例(MNIST数据集)就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持python博客。

展开全文
上一篇:pytorch GAN生成对抗网络实例
下一篇:MNIST数据集转化为二维图片的实现示例
输入字:
相关知识
Python 实现图片色彩转换案例

我们在看动漫、影视作品中,当人物在回忆过程中,体现出来的画面一般都是黑白或者褐色的。本文将提供将图片色彩转为黑白或者褐色风格的案例详解,感兴趣的小伙伴可以了解一下。

python初学定义函数

这篇文章主要为大家介绍了python的定义函数,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助,希望能够给你带来帮助

图文详解Python如何导入自己编写的py文件

有时候自己写了一个py文件,想要把它导入到另一个py文件里面,所以下面这篇文章主要给大家介绍了关于Python如何导入自己编写的py文件的相关资料,需要的朋友可以参考下

python二分法查找实例代码

二分算法是一种效率比较高的查找算法,其输入的是一个有序的元素列表,如果查找元素包含在列表中,二分查找返回其位置,否则返回NONE,下面这篇文章主要给大家介绍了关于python二分法查找的相关资料,需要的朋友可以参考下