首页 > python教程

pytorch GAN生成对抗网络实例

时间:2020-11-17 python教程 查看: 951

我就废话不多说了,直接上代码吧!

import torch
import torch.nn as nn
from torch.autograd import Variable
import numpy as np
import matplotlib.pyplot as plt

torch.manual_seed(1)
np.random.seed(1)

BATCH_SIZE = 64
LR_G = 0.0001
LR_D = 0.0001
N_IDEAS = 5
ART_COMPONENTS = 15
PAINT_POINTS = np.vstack([np.linspace(-1,1,ART_COMPONENTS) for _ in range(BATCH_SIZE)])

def artist_works():
a = np.random.uniform(1,2,size=BATCH_SIZE)[:,np.newaxis]
paintings = a*np.power(PAINT_POINTS,2) + (a-1)
paintings = torch.from_numpy(paintings).float()
return Variable(paintings)

G = nn.Sequential(
nn.Linear(N_IDEAS,128),
nn.ReLU(),
nn.Linear(128,ART_COMPONENTS),
)

D = nn.Sequential(
nn.Linear(ART_COMPONENTS,128),
nn.ReLU(),
nn.Linear(128,1),
nn.Sigmoid(),
)

opt_D = torch.optim.Adam(D.parameters(),lr=LR_D)
opt_G = torch.optim.Adam(G.parameters(),lr=LR_G)

plt.ion()

for step in range(10000):
artist_paintings = artist_works()
G_ideas = Variable(torch.randn(BATCH_SIZE,N_IDEAS))
G_paintings = G(G_ideas)

prob_artist0 = D(artist_paintings)
prob_artist1 = D(G_paintings)

D_loss = - torch.mean(torch.log(prob_artist0) + torch.log(1-prob_artist1))
G_loss = torch.mean(torch.log(1 - prob_artist1))

opt_D.zero_grad()
D_loss.backward(retain_variables=True)
opt_D.step()

opt_G.zero_grad()
G_loss.backward()
opt_G.step()

if step % 50 == 0:
plt.cla()
plt.plot(PAINT_POINTS[0],G_paintings.data.numpy()[0],c='#4ad631',lw=3,label='Generated painting',)
plt.plot(PAINT_POINTS[0],2 * np.power(PAINT_POINTS[0], 2) + 1,c='#74BCFF',lw=3,label='upper bound',)
plt.plot(PAINT_POINTS[0],1 * np.power(PAINT_POINTS[0], 2) + 0,c='#FF9359',lw=3,label='lower bound',)
plt.text(-.5,2.3,'D accuracy=%.2f (0.5 for D to converge)' % prob_artist0.data.numpy().mean(), fontdict={'size':15})
plt.text(-.5, 2, 'D score= %.2f (-1.38 for G to converge)' % -D_loss.data.numpy(), fontdict={'size': 15})
plt.ylim((0,3))
plt.legend(loc='upper right', fontsize=12)
plt.draw()
plt.pause(0.01)

plt.ioff()
plt.show()

以上这篇pytorch GAN生成对抗网络实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持python博客。

展开全文
上一篇:解决pytorch报错:AssertionError: Invalid device id的问题
下一篇:pytorch:实现简单的GAN示例(MNIST数据集)
输入字:
相关知识
Python 实现图片色彩转换案例

我们在看动漫、影视作品中,当人物在回忆过程中,体现出来的画面一般都是黑白或者褐色的。本文将提供将图片色彩转为黑白或者褐色风格的案例详解,感兴趣的小伙伴可以了解一下。

python初学定义函数

这篇文章主要为大家介绍了python的定义函数,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助,希望能够给你带来帮助

图文详解Python如何导入自己编写的py文件

有时候自己写了一个py文件,想要把它导入到另一个py文件里面,所以下面这篇文章主要给大家介绍了关于Python如何导入自己编写的py文件的相关资料,需要的朋友可以参考下

python二分法查找实例代码

二分算法是一种效率比较高的查找算法,其输入的是一个有序的元素列表,如果查找元素包含在列表中,二分查找返回其位置,否则返回NONE,下面这篇文章主要给大家介绍了关于python二分法查找的相关资料,需要的朋友可以参考下