首页 > 数据分析

pandas dataframe 中的explode函数用法详解

时间:2020-07-08 数据分析 查看: 1520

在使用 pandas 进行数据分析的过程中,我们常常会遇到将一行数据展开成多行的需求,多么希望能有一个类似于 hive sql 中的 explode 函数。

这个函数如下:

Code

# !/usr/bin/env python
# -*- coding:utf-8 -*-
# create on 18/4/13
import pandas as pd

def dataframe_explode(dataframe, fieldname): 
 temp_fieldname = fieldname + '_made_tuple_' 
 dataframe[temp_fieldname] = dataframe[fieldname].apply(tuple)  
 list_of_dataframes = []
 for values in dataframe[temp_fieldname].unique().tolist(): 
  list_of_dataframes.append(pd.DataFrame({
   temp_fieldname: [values] * len(values), 
   fieldname: list(values), 
  }))
 dataframe = dataframe[list(set(dataframe.columns) - set([fieldname]))].merge(pd.concat(list_of_dataframes), how='left', on=temp_fieldname) 
 del dataframe[temp_fieldname]
 return dataframe

df = pd.DataFrame({'listcol':[[1,2,3],[4,5,6]], "aa": [222,333]})
df = dataframe_explode(df, "listcol")

Description

将 dataframe 按照某一指定列进行展开,使得原来的每一行展开成一行或多行。( 注:该列可迭代, 例如list, tuple, set)

补充知识:Pandas列中的字典/列表拆分为单独的列

我就废话不多说了,大家还是直接看代码吧

[1] df
Station ID  Pollutants
8809   {"a": "46", "b": "3", "c": "12"}
8810   {"a": "36", "b": "5", "c": "8"}
8811   {"b": "2", "c": "7"}
8812   {"c": "11"}
8813   {"a": "82", "c": "15"}

Method 1:

step 1: convert the Pollutants column to Pandas dataframe series

df_pol_ps = data_df['Pollutants'].apply(pd.Series)

df_pol_ps:
 a b c
0 46 3 12
1 36 5 8
2 NaN 2 7
3 NaN NaN 11
4 82 NaN 15

step 2: concat columns a, b, c and drop/remove the Pollutants

df_final = pd.concat([df, df_pol_ps], axis = 1).drop('Pollutants', axis = 1)

df_final:
 StationID a b c
0 8809 46 3 12
1 8810 36 5 8
2 8811 NaN 2 7
3 8812 NaN NaN 11
4 8813 82 NaN 15

Method 2:

df_final = pd.concat([df, df['Pollutants'].apply(pd.Series)], axis = 1).drop('Pollutants', axis = 1)

df_final:
 StationID a b c
0 8809 46 3 12
1 8810 36 5 8
2 8811 NaN 2 7
3 8812 NaN NaN 11
4 8813 82 NaN 15

以上这篇pandas dataframe 中的explode函数用法详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持python博客。

展开全文
上一篇:Pandas实现一列数据分隔为两列
下一篇:Python pandas如何向excel添加数据
输入字:
相关知识
python数据挖掘使用Evidently创建机器学习模型仪表板

在本文中,我们将探索 Evidently 并创建交互式报告/仪表板。有需要的朋友欢迎大家收藏学习,希望能够有所帮助,祝大家多多进步早日升职加薪

Python多进程共享numpy 数组的方法

本文章主要介绍了Python多进程共享numpy 数组的方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

python数据分析近年比特币价格涨幅趋势分布

这篇文章主要为大家介绍了python分析近年来比特币价格涨幅趋势的数据分布,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步

python调用matlab的方法详解

这篇文章主要为大家介绍了python调用matlab,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助