首页 > 数据分析

numpy的Fancy Indexing和array比较详解

时间:2020-06-24 数据分析 查看: 1340

一:Fancy Indexing

import numpy as np

#Fancy Indexing
x = np.arange(16)
np.random.shuffle(x)
print(x) #打印所有的元素


print(x[2])#获取某个元素的值
print(x[1:3])#切片
print(x[3:9:2])#指定间距切片

index = [2,4,7,9] #索引数组
print(x[index])#获取索引数组中的元素的值

ind = np.array([[0,2],[1,4]]) #索引二维数组
print(x[ind])##获取索引二维数组中的元素的值

print("---------------------")

X = x.reshape(4,-1)
print(X)

ind1 = np.array([1,3]) #行的索引
ind2 = np.array([2,0]) #列的索引
print(X[ind1,ind2])

print(X[:-2,ind2])

bool_index = [True,False,True,False] #True就取当前列,False就不取
print(X[:-1,bool_index])

Fancy Indexing 应用在一维数组 

x = np.arange(16) 
x[3] # 3
x[3:9] # array([3, 4, 5, 6, 7, 8])
x[3:9:2] # array([3, 5, 7])
[x[3], x[5], x[7]] # [3, 5, 7]
ind = [3, 5, 7] 
x[ind]  # array([3, 5, 7])
ind = np.array([[0, 2], [1, 3]]) 
x[ind] 
"""
array([[0, 2],
    [1, 3]])
"""

Fancy Indexing 应用在二维数组 

X = x.reshape(4, -1) 
"""
array([[ 0, 1, 2, 3],
    [ 4, 5, 6, 7],
    [ 8, 9, 10, 11],
    [12, 13, 14, 15]])
"""
row = np.array([0, 1, 2]) 
col = np.array([1, 2, 3])
# 1行2列,2行3列,3行4列
X[row, col]  # array([ 1, 6, 11])
# 前2行 2,3,4列
X[:2, col] 
"""
array([[1, 2, 3],
    [5, 6, 7]])
"""
col = [True, False, True, True] 
X[0, col]  # array([0, 2, 3])

二:array比较

import numpy as np

x = np.arange(16)
print(x)

print(x < 3) #返回的是bool数组

print(x == 3)

print(x != 3)

print(x * 4 == 24 - 4 * x)



print(x + 1)

print(x * 2)

print(x / 4)

print(x - 10)

print(np.sum(x<3))#返回小于3的元素个数

print(np.any(x==0)) #只要向量x中有等于0的就返回true

print(np.all(x==0)) #只有向量x中全部等于0才返回true

print(x[x<5]) #因为x<5返回的是bool数组,我们取true的元素的值


#二维的同样支持
print("----------------------")
X = x.reshape(4,-1)

print(X)
print(X<3)
print(x == 3)
print(np.sum(X<4))
print(np.count_nonzero(X<5)) #返回X中小于5的不等于0的个数
print(np.any(X==0)) #只要向量x中有等于0的就返回true

print(np.all(X==0)) #只有向量x中全部等于0才返回true

print(np.sum(X<4,axis=1))#沿着列的方向,计算每行小于4的个数

print(np.sum((X>3)&(X<10))) #计算X中大于3并且小于10的个数

print(np.sum(~(X==0))) #计算X中不等于0的个数

print(X[X[:,3]%3==0,:]) #因为X[:,3]%3==0返回的是一个向量,元素为true,false,false,true,所以最后取第一行和最后一行

到此这篇关于numpy的Fancy Indexing和array比较详解的文章就介绍到这了,更多相关numpy Fancy Indexing和array比较内容请搜索python博客以前的文章或继续浏览下面的相关文章希望大家以后多多支持python博客!

展开全文
上一篇:Python Scrapy多页数据爬取实现过程解析
下一篇:为什么说python适合写爬虫
输入字:
相关知识
python数据挖掘使用Evidently创建机器学习模型仪表板

在本文中,我们将探索 Evidently 并创建交互式报告/仪表板。有需要的朋友欢迎大家收藏学习,希望能够有所帮助,祝大家多多进步早日升职加薪

Python多进程共享numpy 数组的方法

本文章主要介绍了Python多进程共享numpy 数组的方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

python数据分析近年比特币价格涨幅趋势分布

这篇文章主要为大家介绍了python分析近年来比特币价格涨幅趋势的数据分布,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步

python调用matlab的方法详解

这篇文章主要为大家介绍了python调用matlab,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助