首页 > 数据分析

Python实现删除某列中含有空值的行的示例代码

时间:2020-08-25 数据分析 查看: 1517

客户需求

查看销售人员不为空值的行

数据存储情况如图:


代码实现

import pandas as pd

data = pd.read_excel('test.xlsx',sheet_name='Sheet1')
datanota = data[data['销售人员'].notna()]
print(datanota)

输出结果

D:\Python\Anaconda\python.exe D:/Python/test/EASdeal/test.py
城市 销售金额 销售人员
0 北京 10000 张丽丽
1 上海 50000 潇潇
2 深圳 60000 笨笨笨
3 成都 40000 达达

Process finished with exit code 0

如何删除特定列为空/ NaN的行?

我有一个csv文件.我读了它:

import pandas as pd
data = pd.read_csv('my_data.csv', sep=',')
data.head()

它的输出如下:

id    city    department    sms    category
01    khi      revenue      NaN       0
02    lhr      revenue      good      1
03    lhr      revenue      NaN       0

我想删除sms列为空/ NaN的所有行.什么是有效的方法呢?

解决方法:

将dropna与参数子集一起使用以指定用于检查NaN的列:

data = data.dropna(subset=['sms'])
print (data)
  id city department  sms category
1  2 lhr  revenue good     1

boolean indexing和notnull的另一个解决方案:

data = data[data['sms'].notnull()]
print (data)
  id city department  sms category
1  2 lhr  revenue good     1

替代query:

print (data.query("sms == sms"))
  id city department  sms category
1  2 lhr  revenue good     1

计时

#[300000 rows x 5 columns]
data = pd.concat([data]*100000).reset_index(drop=True)

In [123]: %timeit (data.dropna(subset=['sms']))
100 loops, best of 3: 19.5 ms per loop

In [124]: %timeit (data[data['sms'].notnull()])
100 loops, best of 3: 13.8 ms per loop

In [125]: %timeit (data.query("sms == sms"))
10 loops, best of 3: 23.6 ms per loop

到此这篇关于Python实现删除某列中含有空值的行的示例代码的文章就介绍到这了,更多相关Python删除某列空值内容请搜索python博客以前的文章或继续浏览下面的相关文章希望大家以后多多支持python博客!

展开全文
上一篇:python打开音乐文件的实例方法
下一篇:Python DataFrame使用drop_duplicates()函数去重(保留重复值,取重复值)
输入字:
相关知识
python数据挖掘使用Evidently创建机器学习模型仪表板

在本文中,我们将探索 Evidently 并创建交互式报告/仪表板。有需要的朋友欢迎大家收藏学习,希望能够有所帮助,祝大家多多进步早日升职加薪

Python多进程共享numpy 数组的方法

本文章主要介绍了Python多进程共享numpy 数组的方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

python数据分析近年比特币价格涨幅趋势分布

这篇文章主要为大家介绍了python分析近年来比特币价格涨幅趋势的数据分布,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步

python调用matlab的方法详解

这篇文章主要为大家介绍了python调用matlab,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助