首页 > 数据分析

python目标检测给图画框,bbox画到图上并保存案例

时间:2020-08-05 数据分析 查看: 1237

我就废话不多说了,还是直接上代码吧!

import os
import xml.dom.minidom
import cv2 as cv

ImgPath = 'C:/Users/49691/Desktop/gangjin/gangjin_test/JPEGImages/'
AnnoPath = 'C:/Users/49691/Desktop/gangjin/gangjin_test/Annotations/' #xml文件地址
save_path = ''
def draw_anchor(ImgPath,AnnoPath,save_path):
  imagelist = os.listdir(ImgPath)
  for image in imagelist:

    image_pre, ext = os.path.splitext(image)
    imgfile = ImgPath + image
    xmlfile = AnnoPath + image_pre + '.xml'
    # print(image)
    # 打开xml文档
    DOMTree = xml.dom.minidom.parse(xmlfile)
    # 得到文档元素对象
    collection = DOMTree.documentElement
    # 读取图片
    img = cv.imread(imgfile)

    filenamelist = collection.getElementsByTagName("filename")
    filename = filenamelist[0].childNodes[0].data
    print(filename)
    # 得到标签名为object的信息
    objectlist = collection.getElementsByTagName("object")

    for objects in objectlist:
      # 每个object中得到子标签名为name的信息
      namelist = objects.getElementsByTagName('name')
      # 通过此语句得到具体的某个name的值
      objectname = namelist[0].childNodes[0].data

      bndbox = objects.getElementsByTagName('bndbox')
      # print(bndbox)
      for box in bndbox:
        x1_list = box.getElementsByTagName('xmin')
        x1 = int(x1_list[0].childNodes[0].data)
        y1_list = box.getElementsByTagName('ymin')
        y1 = int(y1_list[0].childNodes[0].data)
        x2_list = box.getElementsByTagName('xmax')  #注意坐标,看是否需要转换
        x2 = int(x2_list[0].childNodes[0].data)
        y2_list = box.getElementsByTagName('ymax')
        y2 = int(y2_list[0].childNodes[0].data)
        cv.rectangle(img, (x1, y1), (x2, y2), (255, 255, 255), thickness=2)
        cv.putText(img, objectname, (x1, y1), cv.FONT_HERSHEY_COMPLEX, 0.7, (0, 255, 0),
              thickness=2)
        # cv.imshow('head', img)
        cv.imwrite(save_path+'/'+filename, img)  #save picture

补充知识:深度学习python之用Faster-rcnn 检测结果(txt文件) 在原图画出box

使用Faster-rcnn 的test_net.py 检测网络的mAP等精度会生成一个检测结果(txt文件),格式如下:

000004 0.972 302.8 94.5 512.0 150.0
000004 0.950 348.1 166.1 512.0 242.9
000004 0.875 1.0 25.7 292.6 126.3
000004 0.730 1.0 138.5 488.3 230.0
000004 0.699 1.0 120.9 145.5 139.9
000004 0.592 54.4 227.4 431.9 343.4
000004 0.588 1.0 159.8 18.8 231.6
000004 0.126 1.0 247.1 342.3 270.0
000004 0.120 1.0 225.4 185.7 309.3

每行分别为 名称 检测概率 xmin ymin xmax ymax

问题在于每一行只显示一个box数据,每幅图像可能包括多个box,需要判断提取的多行数据是不是属于同一图片

下面使用python提取这些数据,在原图上画出box并且保存起来

import os
import os.path
import numpy as np
import xml.etree.ElementTree as xmlET
from PIL import Image, ImageDraw
import cPickle as pickle 

txt_name = 'comp4_8a226fd7-753d-40fc-8013-f68d2a465579_det_test_ship.txt'
file_path_img = '/home/JPEGImages'
save_file_path = '/home/detect_results'


source_file = open(txt_name)

img_names = []
for line in source_file:
  staff = line.split()
  img_name = staff[0]
  img_names.append(img_name)

name_dict = {}
for i in img_names:
  if img_names.count(i)>0:
    name_dict[i] = img_names.count(i) 

source_file.close()

source_file = open(txt_name)
for idx in name_dict:
  img = Image.open(os.path.join(file_path_img, idx + '.jpg')) 
  draw = ImageDraw.Draw(img)
  for i in xrange(name_dict[idx]):
    line = source_file.readline()
    staff = line.split()
    score = staff[1]
    box = staff[2:6]
    draw.rectangle([int(np.round(float(box[0]))), int(np.round(float(box[1]))), 
          int(np.round(float(box[2]))), int(np.round(float(box[3])))], outline=(255, 0, 0))
  img.save(os.path.join(save_file_path, idx + '.jpg')) 

source_file.close()

运行完即可在保存文件夹中得到效果图。

以上这篇python目标检测给图画框,bbox画到图上并保存案例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持python博客。

展开全文
上一篇:Python xlrd excel文件操作代码实例
下一篇:Python numpy多维数组实现原理详解
输入字:
相关知识
python数据挖掘使用Evidently创建机器学习模型仪表板

在本文中,我们将探索 Evidently 并创建交互式报告/仪表板。有需要的朋友欢迎大家收藏学习,希望能够有所帮助,祝大家多多进步早日升职加薪

Python多进程共享numpy 数组的方法

本文章主要介绍了Python多进程共享numpy 数组的方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

python数据分析近年比特币价格涨幅趋势分布

这篇文章主要为大家介绍了python分析近年来比特币价格涨幅趋势的数据分布,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步

python调用matlab的方法详解

这篇文章主要为大家介绍了python调用matlab,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助