首页 > 数据分析

python seaborn heatmap可视化相关性矩阵实例

时间:2020-06-25 数据分析 查看: 1296

方法

import pandas as pd
import numpy as np
import seaborn as sns
df = pd.DataFrame(np.random.randn(50).reshape(10,5))
corr = df.corr()
sns.heatmap(corr, cmap='Blues', annot=True)

将矩阵型简化为对角矩阵型:

mask = np.zeros_like(corr)
mask[np.tril_indices_from(mask)] = True
sns.heatmap(corr, cmap='Blues', annot=True, mask=mask.T)

补充知识:Python【相关矩阵】和【协方差矩阵】

相关系数矩阵

pandas.DataFrame(数据).corr()

import pandas as pd
df = pd.DataFrame({
  'a': [11, 22, 33, 44, 55, 66, 77, 88, 99],
  'b': [10, 24, 30, 48, 50, 72, 70, 96, 90],
  'c': [91, 79, 72, 58, 53, 47, 34, 16, 10],
  'd': [99, 10, 98, 10, 17, 10, 77, 89, 10]})
df_corr = df.corr()
# 可视化
import matplotlib.pyplot as mp, seaborn
seaborn.heatmap(df_corr, center=0, annot=True, cmap='YlGnBu')
mp.show()

协方差矩阵

numpy.cov(数据)

import numpy as np
matric = [
  [11, 22, 33, 44, 55, 66, 77, 88, 99],
  [10, 24, 30, 48, 50, 72, 70, 96, 90],
  [91, 79, 72, 58, 53, 47, 34, 16, 10],
  [55, 20, 98, 19, 17, 10, 77, 89, 14]]
covariance_matrix = np.cov(matric)
# 可视化
print(covariance_matrix)
import matplotlib.pyplot as mp, seaborn
seaborn.heatmap(covariance_matrix, center=0, annot=True, xticklabels=list('abcd'), yticklabels=list('ABCD'))
mp.show()

补充

协方差

相关系数

EXCEL也能做

CORREL函数

以上这篇python seaborn heatmap可视化相关性矩阵实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持python博客。

展开全文
上一篇:解决numpy矩阵相减出现的负值自动转正值的问题
下一篇:Python小白学习爬虫常用请求报头
输入字:
相关知识
python数据挖掘使用Evidently创建机器学习模型仪表板

在本文中,我们将探索 Evidently 并创建交互式报告/仪表板。有需要的朋友欢迎大家收藏学习,希望能够有所帮助,祝大家多多进步早日升职加薪

Python多进程共享numpy 数组的方法

本文章主要介绍了Python多进程共享numpy 数组的方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

python数据分析近年比特币价格涨幅趋势分布

这篇文章主要为大家介绍了python分析近年来比特币价格涨幅趋势的数据分布,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步

python调用matlab的方法详解

这篇文章主要为大家介绍了python调用matlab,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助