时间:2020-07-28 数据分析 查看: 1513
如下所示:
import numpy as np
np.set_printoptions(threshold=np.nan)
print(ndarray)
当ndarray里面的存放的数据维度过大时,在控制台会出现不能将ndarray完全输出的情况,中间部分的结果会用省略号打印出来。这时就需要用到numpy里面的set_printoptions()方法。
set_printoptions(precision=None,
threshold=None,
edgeitems=None,
linewidth=None,
suppress=None,
nanstr=None,
infstr=None,
formatter=None)
precision:输出结果保留精度的位数
threshold:array数量的个数在小于threshold的时候不会被折叠
edgeitems:在array已经被折叠后,开头和结尾都会显示edgeitems个数
formatter:这个很有意思,像python3里面str.format(),就是可以对你的输出进行自定义的格式化
其他的暂时没用到
举例:
precision:
np.set_printoptions(precision=4)
print(np.array([1.23456789]))
>> [ 1.2346] # 最后进位了
threshold:
np.set_printoptions(threshold=10)
print(np.arange(1, 11, 1)) # np.arange(1, 11, 1)生成出来是[1-10],10个数
>> [ 1 2 3 4 5 6 7 8 9 10]
np.set_printoptions(threshold=9)
print(np.arange(1, 11, 1))
>> [ 1 2 3 ..., 8 9 10]
edgeitems:
np.set_printoptions(threshold=5)
print(np.arange(1, 11, 1))
>> [ 1 2 3 ..., 8 9 10]
np.set_printoptions(threshold=5, edgeitems=4)
print(np.arange(1, 11, 1))
>> [ 1 2 3 4 ..., 7 8 9 10]
formatter
np.set_printoptions(formatter={'all': lambda x: 'int: ' + str(-x)})
print(np.arange(1, 5, 1))
>> [int: -1 int: -2 int: -3 int: -4]
这个formatter是一个可调用的字典,'all'是其中一个key,表示里面的x可以包含所有type,还有其他key,具体可以在源码里面查看
最后如果只想在代码中的某一部分使用自定义的printoptions,那么可以通过再次调用np.set_printoptions()这个方法来进行reset
以上这篇Python Numpy 控制台完全输出ndarray的实现就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持python博客。