首页 > 数据分析

Pandas缺失值2种处理方式代码实例

时间:2020-06-23 数据分析 查看: 1592

处理方式:

存在缺失值nan,并且是np.nan:

删除存在缺失值的:dropna(axis='rows')

替换缺失值:fillna(df[].mean(), inplace=True)

不是缺失值nan,有默认标记的

1、存在缺失值nan,并且是np.nan

# 判断数据是否为NaN
# pd.isnull(df),pd.notnull(df),pd.isna(df)

# 读取数据
movie = pd.read_csv("./date/IMDB-Movie-Data.csv")

##第一种 删除
# pandas删除缺失值,使用dropna的前提是,缺失值的类型必须是np.nan
# 删除缺失值为np.nan的所在行
movie.dropna()

# 第二种 替换缺失值
# 替换存在缺失值的样本
# 替换 填充平均值
movie['Metascore'].fillna(movie['Metascore'].mean(), inplace=True)
# 替换 填充自定义值
movie['Metascore'].fillna(11, inplace=True) 

2、不是缺失值nan,有默认标记的

1、先替换默认标记值为np.nan

df.replace(to_replace=, value=)

2、在进行缺失值的处理

# 把一些其它值标记的缺失值,替换成np.nan
mm = moive.replace(to_replace='默认值', value=np.nan)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持python博客。

展开全文
上一篇:Python实现Keras搭建神经网络训练分类模型教程
下一篇:使用Keras实现简单线性回归模型操作
输入字:
相关知识
python数据挖掘使用Evidently创建机器学习模型仪表板

在本文中,我们将探索 Evidently 并创建交互式报告/仪表板。有需要的朋友欢迎大家收藏学习,希望能够有所帮助,祝大家多多进步早日升职加薪

Python多进程共享numpy 数组的方法

本文章主要介绍了Python多进程共享numpy 数组的方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

python数据分析近年比特币价格涨幅趋势分布

这篇文章主要为大家介绍了python分析近年来比特币价格涨幅趋势的数据分布,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步

python调用matlab的方法详解

这篇文章主要为大家介绍了python调用matlab,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助