在处理numpy数组,有这个需求,故写下此文:
使用np.argwhere和np.all来查找索引。要使用np.delete删除它们。
示例1
import numpy as np
a = np.array([[1, 2, 0, 3, 0],
[4, 5, 0, 6, 0],
[7, 8, 0, 9, 0]])
idx = np.argwhere(np.all(a[..., :] == 0, axis=0))
a2 = np.delete(a, idx, axis=1)
print(a2)
"""
[[1 2 3]
[4 5 6]
[7 8 9]]
"""
示例2
import numpy as np
array1 = np.array([[1,0,1,0,0,0,0,0,0,1,1,0,0,0,1,1,0,1,0,0],
[0,1,1,0,0,1,1,1,1,0,0,0,1,0,1,0,0,1,1,1],
[0,0,1,0,0,1,1,1,0,0,0,0,0,0,0,1,0,0,1,1],
[0,1,1,0,0,1,1,1,1,0,1,1,1,0,0,1,0,0,1,1],
[0,0,1,0,0,1,1,1,0,1,0,1,1,0,1,1,0,0,1,0],
[1,0,1,0,0,0,1,0,0,1,1,1,1,0,1,1,0,0,1,0],
[1,0,1,0,1,1,0,0,0,0,1,0,0,0,1,0,0,0,1,1],
[0,1,0,0,1,0,0,0,1,0,1,1,1,0,1,0,0,1,1,0],
[0,1,0,0,1,0,0,1,1,0,1,1,1,0,0,1,0,1,0,0],
[1,0,0,0,0,1,0,1,0,0,0,1,1,0,0,1,0,1,0,0]])
mask = (array1 == 0).all(0)
column_indices = np.where(mask)[0]
array1 = array1[:,~mask]
print("raw array", array1.shape) # raw array (10, 20)
print("after array",array1.shape) # after array (10, 17)
print("=====x=====\n",array1)
其它查看:https://moonbooks.org/Articles/How-to-remove-array-rows-that-contain-only-0-in-python/
pandas 删除全零列
from pandas import DataFrame
df1=DataFrame(np.arange(16).reshape((4,4)),index=['a','b','c','d'],columns=['one','two','three','four']) # 创建一个dataframe
df1.loc['e'] = 0 # 优雅地增加一行全0
df1.ix[(df1==0).all(axis=1), :] # 找到它
df1.ix[~(df1==0).all(axis=1), :] # 删了它
到此这篇关于Numpy(Pandas)删除全为零的列的方法的文章就介绍到这了,更多相关Numpy删除全为零的列内容请搜索python博客以前的文章或继续浏览下面的相关文章希望大家以后多多支持python博客!
Powered By python教程网 鲁ICP备18013710号
python博客 - 小白学python最友好的网站!