当前位置:首页 » 数据分析 » 正文

Pandas中DataFrame基本函数整理(小结)

看: 877次  时间:2020-08-25  分类 : 数据分析

构造函数

DataFrame([data, index, columns, dtype, copy]) #构造数据框

属性和数据

DataFrame.axes                #index: 行标签;columns: 列标签
DataFrame.as_matrix([columns])        #转换为矩阵
DataFrame.dtypes               #返回数据的类型
DataFrame.ftypes               #返回每一列的 数据类型float64:dense
DataFrame.get_dtype_counts()         #返回数据框数据类型的个数
DataFrame.get_ftype_counts()         #返回数据框数据类型float64:dense的个数
DataFrame.select_dtypes([include, include])  #根据数据类型选取子数据框
DataFrame.values               #Numpy的展示方式
DataFrame.axes                #返回横纵坐标的标签名
DataFrame.ndim                #返回数据框的纬度
DataFrame.size                #返回数据框元素的个数
DataFrame.shape                #返回数据框的形状
DataFrame.memory_usage()           #每一列的存储

类型转换

DataFrame.astype(dtype[, copy, errors])    #转换数据类型
DataFrame.copy([deep])            #deep深度复制数据
DataFrame.isnull()              #以布尔的方式返回空值
DataFrame.notnull()              #以布尔的方式返回非空值

索引和迭代

DataFrame.head([n])              #返回前n行数据
DataFrame.at                 #快速标签常量访问器
DataFrame.iat                 #快速整型常量访问器
DataFrame.loc                 #标签定位,使用名称
DataFrame.iloc                #整型定位,使用数字
DataFrame.insert(loc, column, value)     #在特殊地点loc[数字]插入column[列名]某列数据
DataFrame.iter()               #Iterate over infor axis
DataFrame.iteritems()             #返回列名和序列的迭代器
DataFrame.iterrows()             #返回索引和序列的迭代器
DataFrame.itertuples([index, name])      #Iterate over DataFrame rows as namedtuples, with index value as first element of the tuple.
DataFrame.lookup(row_labels, col_labels)   #Label-based “fancy indexing” function for DataFrame.
DataFrame.pop(item)              #返回删除的项目
DataFrame.tail([n])              #返回最后n行
DataFrame.xs(key[, axis, level, drop_level]) #Returns a cross-section (row(s) or column(s)) from the Series/DataFrame.
DataFrame.isin(values)            #是否包含数据框中的元素
DataFrame.where(cond[, other, inplace, …])  #条件筛选
DataFrame.mask(cond[, other, inplace, …])   #Return an object of same shape as self and whose corresponding entries are from self where cond is False and otherwise are from other.
DataFrame.query(expr[, inplace])       #Query the columns of a frame with a boolean expression.

二元运算

DataFrame.add(other[,axis,fill_value])    #加法,元素指向
DataFrame.sub(other[,axis,fill_value])    #减法,元素指向
DataFrame.mul(other[, axis,fill_value])    #乘法,元素指向
DataFrame.div(other[, axis,fill_value])    #小数除法,元素指向
DataFrame.truediv(other[, axis, level, …])  #真除法,元素指向
DataFrame.floordiv(other[, axis, level, …])  #向下取整除法,元素指向
DataFrame.mod(other[, axis,fill_value])    #模运算,元素指向
DataFrame.pow(other[, axis,fill_value])    #幂运算,元素指向
DataFrame.radd(other[, axis,fill_value])   #右侧加法,元素指向
DataFrame.rsub(other[, axis,fill_value])   #右侧减法,元素指向
DataFrame.rmul(other[, axis,fill_value])   #右侧乘法,元素指向
DataFrame.rdiv(other[, axis,fill_value])   #右侧小数除法,元素指向
DataFrame.rtruediv(other[, axis, …])     #右侧真除法,元素指向
DataFrame.rfloordiv(other[, axis, …])     #右侧向下取整除法,元素指向
DataFrame.rmod(other[, axis,fill_value])   #右侧模运算,元素指向
DataFrame.rpow(other[, axis,fill_value])   #右侧幂运算,元素指向
DataFrame.lt(other[, axis, level])      #类似Array.lt
DataFrame.gt(other[, axis, level])      #类似Array.gt
DataFrame.le(other[, axis, level])      #类似Array.le
DataFrame.ge(other[, axis, level])      #类似Array.ge
DataFrame.ne(other[, axis, level])      #类似Array.ne
DataFrame.eq(other[, axis, level])      #类似Array.eq
DataFrame.combine(other,func[,fill_value, …]) #Add two DataFrame objects and do not propagate NaN values, so if for a
DataFrame.combine_first(other)        #Combine two DataFrame objects and default to non-null values in frame calling the method.

函数应用&分组&窗口

DataFrame.apply(func[, axis, broadcast, …])  #应用函数
DataFrame.applymap(func)           #Apply a function to a DataFrame that is intended to operate elementwise, i.e.
DataFrame.aggregate(func[, axis])       #Aggregate using callable, string, dict, or list of string/callables
DataFrame.transform(func, *args, **kwargs)  #Call function producing a like-indexed NDFrame
DataFrame.groupby([by, axis, level, …])    #分组
DataFrame.rolling(window[, min_periods, …])  #滚动窗口
DataFrame.expanding([min_periods, freq, …])  #拓展窗口
DataFrame.ewm([com, span, halflife, …])   #指数权重窗口

描述统计学

DataFrame.abs()                #返回绝对值
DataFrame.all([axis, bool_only, skipna])   #Return whether all elements are True over requested axis
DataFrame.any([axis, bool_only, skipna])   #Return whether any element is True over requested axis
DataFrame.clip([lower, upper, axis])     #Trim values at input threshold(s).
DataFrame.clip_lower(threshold[, axis])    #Return copy of the input with values below given value(s) truncated.
DataFrame.clip_upper(threshold[, axis])    #Return copy of input with values above given value(s) truncated.
DataFrame.corr([method, min_periods])     #返回本数据框成对列的相关性系数
DataFrame.corrwith(other[, axis, drop])    #返回不同数据框的相关性
DataFrame.count([axis, level, numeric_only]) #返回非空元素的个数
DataFrame.cov([min_periods])         #计算协方差
DataFrame.cummax([axis, skipna])       #Return cumulative max over requested axis.
DataFrame.cummin([axis, skipna])       #Return cumulative minimum over requested axis.
DataFrame.cumprod([axis, skipna])       #返回累积
DataFrame.cumsum([axis, skipna])       #返回累和
DataFrame.describe([percentiles,include, …]) #整体描述数据框
DataFrame.diff([periods, axis])        #1st discrete difference of object
DataFrame.eval(expr[, inplace])        #Evaluate an expression in the context of the calling DataFrame instance.
DataFrame.kurt([axis, skipna, level, …])   #返回无偏峰度Fisher's (kurtosis of normal == 0.0).
DataFrame.mad([axis, skipna, level])     #返回偏差
DataFrame.max([axis, skipna, level, …])    #返回最大值
DataFrame.mean([axis, skipna, level, …])   #返回均值
DataFrame.median([axis, skipna, level, …])  #返回中位数
DataFrame.min([axis, skipna, level, …])    #返回最小值
DataFrame.mode([axis, numeric_only])     #返回众数
DataFrame.pct_change([periods, fill_method]) #返回百分比变化
DataFrame.prod([axis, skipna, level, …])   #返回连乘积
DataFrame.quantile([q, axis, numeric_only])  #返回分位数
DataFrame.rank([axis, method, numeric_only]) #返回数字的排序
DataFrame.round([decimals])          #Round a DataFrame to a variable number of decimal places.
DataFrame.sem([axis, skipna, level, ddof])  #返回无偏标准误
DataFrame.skew([axis, skipna, level, …])   #返回无偏偏度
DataFrame.sum([axis, skipna, level, …])    #求和
DataFrame.std([axis, skipna, level, ddof])  #返回标准误差
DataFrame.var([axis, skipna, level, ddof])  #返回无偏误差 

从新索引&选取&标签操作

DataFrame.add_prefix(prefix)         #添加前缀
DataFrame.add_suffix(suffix)         #添加后缀
DataFrame.align(other[, join, axis, level])  #Align two object on their axes with the
DataFrame.drop(labels[, axis, level, …])   #返回删除的列
DataFrame.drop_duplicates([subset, keep, …]) #Return DataFrame with duplicate rows removed, optionally only
DataFrame.duplicated([subset, keep])     #Return boolean Series denoting duplicate rows, optionally only
DataFrame.equals(other)            #两个数据框是否相同
DataFrame.filter([items, like, regex, axis]) #过滤特定的子数据框
DataFrame.first(offset)            #Convenience method for subsetting initial periods of time series data based on a date offset.
DataFrame.head([n])              #返回前n行
DataFrame.idxmax([axis, skipna])       #Return index of first occurrence of maximum over requested axis.
DataFrame.idxmin([axis, skipna])       #Return index of first occurrence of minimum over requested axis.
DataFrame.last(offset)            #Convenience method for subsetting final periods of time series data based on a date offset.
DataFrame.reindex([index, columns])      #Conform DataFrame to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index.
DataFrame.reindex_axis(labels[, axis, …])   #Conform input object to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index.
DataFrame.reindex_like(other[, method, …])  #Return an object with matching indices to myself.
DataFrame.rename([index, columns])      #Alter axes input function or functions.
DataFrame.rename_axis(mapper[, axis, copy])  #Alter index and / or columns using input function or functions.
DataFrame.reset_index([level, drop, …])    #For DataFrame with multi-level index, return new DataFrame with labeling information in the columns under the index names, defaulting to ‘level_0', ‘level_1', etc.
DataFrame.sample([n, frac, replace, …])    #返回随机抽样
DataFrame.select(crit[, axis])        #Return data corresponding to axis labels matching criteria
DataFrame.set_index(keys[, drop, append ])  #Set the DataFrame index (row labels) using one or more existing columns.
DataFrame.tail([n])              #返回最后几行
DataFrame.take(indices[, axis, convert])   #Analogous to ndarray.take
DataFrame.truncate([before, after, axis ])  #Truncates a sorted NDFrame before and/or after some particular index value.

处理缺失值

DataFrame.dropna([axis, how, thresh, …])   #Return object with labels on given axis omitted where alternately any
DataFrame.fillna([value, method, axis, …])  #填充空值
DataFrame.replace([to_replace, value, …])   #Replace values given in ‘to_replace' with ‘value'.

从新定型&排序&转变形态

DataFrame.pivot([index, columns, values])   #Reshape data (produce a “pivot” table) based on column values.
DataFrame.reorder_levels(order[, axis])    #Rearrange index levels using input order.
DataFrame.sort_values(by[, axis, ascending]) #Sort by the values along either axis
DataFrame.sort_index([axis, level, …])    #Sort object by labels (along an axis)
DataFrame.nlargest(n, columns[, keep])    #Get the rows of a DataFrame sorted by the n largest values of columns.
DataFrame.nsmallest(n, columns[, keep])    #Get the rows of a DataFrame sorted by the n smallest values of columns.
DataFrame.swaplevel([i, j, axis])       #Swap levels i and j in a MultiIndex on a particular axis
DataFrame.stack([level, dropna])       #Pivot a level of the (possibly hierarchical) column labels, returning a DataFrame (or Series in the case of an object with a single level of column labels) having a hierarchical index with a new inner-most level of row labels.
DataFrame.unstack([level, fill_value])    #Pivot a level of the (necessarily hierarchical) index labels, returning a DataFrame having a new level of column labels whose inner-most level consists of the pivoted index labels.
DataFrame.melt([id_vars, value_vars, …])   #“Unpivots” a DataFrame from wide format to long format, optionally
DataFrame.T                  #Transpose index and columns
DataFrame.to_panel()             #Transform long (stacked) format (DataFrame) into wide (3D, Panel) format.
DataFrame.to_xarray()             #Return an xarray object from the pandas object.
DataFrame.transpose(*args, **kwargs)     #Transpose index and columns

Combining& joining&merging

DataFrame.append(other[, ignore_index, …])  #追加数据
DataFrame.assign(**kwargs)          #Assign new columns to a DataFrame, returning a new object (a copy) with all the original columns in addition to the new ones.
DataFrame.join(other[, on, how, lsuffix, …]) #Join columns with other DataFrame either on index or on a key column.
DataFrame.merge(right[, how, on, left_on, …]) #Merge DataFrame objects by performing a database-style join operation by columns or indexes.
DataFrame.update(other[, join, overwrite, …]) #Modify DataFrame in place using non-NA values from passed DataFrame.

时间序列

DataFrame.asfreq(freq[, method, how, …])   #将时间序列转换为特定的频次
DataFrame.asof(where[, subset])        #The last row without any NaN is taken (or the last row without
DataFrame.shift([periods, freq, axis])    #Shift index by desired number of periods with an optional time freq
DataFrame.first_valid_index()         #Return label for first non-NA/null value
DataFrame.last_valid_index()         #Return label for last non-NA/null value
DataFrame.resample(rule[, how, axis, …])   #Convenience method for frequency conversion and resampling of time series.
DataFrame.to_period([freq, axis, copy])    #Convert DataFrame from DatetimeIndex to PeriodIndex with desired
DataFrame.to_timestamp([freq, how, axis])   #Cast to DatetimeIndex of timestamps, at beginning of period
DataFrame.tz_convert(tz[, axis, level, copy]) #Convert tz-aware axis to target time zone.
DataFrame.tz_localize(tz[, axis, level, …])  #Localize tz-naive TimeSeries to target time zone.

作图

DataFrame.plot([x, y, kind, ax, ….])     #DataFrame plotting accessor and method
DataFrame.plot.area([x, y])          #面积图Area plot
DataFrame.plot.bar([x, y])          #垂直条形图Vertical bar plot
DataFrame.plot.barh([x, y])          #水平条形图Horizontal bar plot
DataFrame.plot.box([by])           #箱图Boxplot
DataFrame.plot.density(**kwds)        #核密度Kernel Density Estimate plot
DataFrame.plot.hexbin(x, y[, C, …])      #Hexbin plot
DataFrame.plot.hist([by, bins])        #直方图Histogram
DataFrame.plot.kde(**kwds)          #核密度Kernel Density Estimate plot
DataFrame.plot.line([x, y])          #线图Line plot
DataFrame.plot.pie([y])            #饼图Pie chart
DataFrame.plot.scatter(x, y[, s, c])     #散点图Scatter plot
DataFrame.boxplot([column, by, ax, …])    #Make a box plot from DataFrame column optionally grouped by some columns or
DataFrame.hist(data[, column, by, grid, …])  #Draw histogram of the DataFrame's series using matplotlib / pylab.

转换为其他格式

DataFrame.from_csv(path[, header, sep, …])  #Read CSV file (DEPRECATED, please use pandas.read_csv() instead).
DataFrame.from_dict(data[, orient, dtype])  #Construct DataFrame from dict of array-like or dicts
DataFrame.from_items(items[,columns,orient]) #Convert (key, value) pairs to DataFrame.
DataFrame.from_records(data[, index, …])   #Convert structured or record ndarray to DataFrame
DataFrame.info([verbose, buf, max_cols, …])  #Concise summary of a DataFrame.
DataFrame.to_pickle(path[, compression, …])  #Pickle (serialize) object to input file path.
DataFrame.to_csv([path_or_buf, sep, na_rep]) #Write DataFrame to a comma-separated values (csv) file
DataFrame.to_hdf(path_or_buf, key, **kwargs) #Write the contained data to an HDF5 file using HDFStore.
DataFrame.to_sql(name, con[, flavor, …])   #Write records stored in a DataFrame to a SQL database.
DataFrame.to_dict([orient, into])       #Convert DataFrame to dictionary.
DataFrame.to_excel(excel_writer[, …])     #Write DataFrame to an excel sheet
DataFrame.to_json([path_or_buf, orient, …])  #Convert the object to a JSON string.
DataFrame.to_html([buf, columns, col_space]) #Render a DataFrame as an HTML table.
DataFrame.to_feather(fname)          #write out the binary feather-format for DataFrames
DataFrame.to_latex([buf, columns, …])     #Render an object to a tabular environment table.
DataFrame.to_stata(fname[, convert_dates, …]) #A class for writing Stata binary dta files from array-like objects
DataFrame.to_msgpack([path_or_buf, encoding]) #msgpack (serialize) object to input file path
DataFrame.to_sparse([fill_value, kind])    #Convert to SparseDataFrame
DataFrame.to_dense()             #Return dense representation of NDFrame (as opposed to sparse)
DataFrame.to_string([buf, columns, …])    #Render a DataFrame to a console-friendly tabular output.
DataFrame.to_clipboard([excel, sep])     #Attempt to write text representation of object to the system clipboard This can be pasted into Excel, for example.

到此这篇关于Pandas中DataFrame基本函数整理(小结)的文章就介绍到这了,更多相关Pandas DataFrame基本函数内容请搜索python博客以前的文章或继续浏览下面的相关文章希望大家以后多多支持python博客! 

标签:pandas  matplotlib  

<< 上一篇 下一篇 >>

搜索

推荐资源

  Powered By python教程网   鲁ICP备18013710号
python博客 - 小白学python最友好的网站!