当前位置:首页 » 数据分析 » 正文

pandas中NaN缺失值的处理方法

看: 2610次  时间:2021-07-20  分类 : 数据分析

本文主要介绍了pandas中NaN缺失值的处理方法,主要有两种方法,具体如下:

import pandas as pd

缺失值处理

两种方法:

  • 删除含有缺失值的样本
  • 替换/插补

处理缺失值为NaN

先判断数据中是否存在NaN,通过下面两个方法中任意一个

pd.isnull(dataframe)
# dataframe为数据
如果数据中存在NaN返回True,如果没有就返回False

pd.notnull(dataframe)
该方法与isnull相反

any()  和 all()
"""
pd.isnull(dataframe).any()
判断哪一个字段中存在缺失值没有就返回False

pd.notnull(dataframe).all()
判断哪一个字段中存在缺失值没有就返回True
"""

使用numpy也可以进行判断

import numpy as np

np.any(pd.isnull(dataframe)) # 如果返回True,说明数据中存在缺失值

np.all(pd.notnull(dataframe)) # 如果返回False, 说明数据中存在缺失值

然后进行数据处理

方式一: 删除空值行

dataframe.dropna(inplace=False)

"""
dropna() 是删除空值数据的方法, 默认将只要含有NaN的整行数据删除, 
如果想要删除整行都是空值的数据需要添加how='all'参数

默认是删除整行, 如果对列做删除操作, 需要添加axis参数, 
axis=1表示删除列, axis=0表示删除行

inplace: 是否在当前的dataframe中执行此操作,
True表示在原来的基础上修改,
False表示返回一个新的值, 不修改原有数据
"""

方式二: 替换/插补

dataframe.fillna('替换的值value',inplace=False)
'''
把替换NaN的值传入到fillna()中
'''

缺失值NaN有默认标记的值

比如有的空值不是NaN, 有的是一个'?'

先替换
使用numpy把"?"替换为NaN

import numpy as np

# 替换
dataframe.replace(to_replace="?", value=np.nan)

把其他的缺失值换为NaN后, 然后就按照缺失值为NaN的方式就行操作

删除数据

如果只是单独的删除数据可以使用drop()方法

DataFrame.drop(labels=None,axis=0, index=None, columns=None, inplace=False)

'''
代码解释:
labels : 就是要删除的行列的名字,用列表指定
index : 直接指定要删除的行
columns : 直接指定要删除的列
inplace=False : 表示返回一个新的值, 不修改原有数据
inplace=True : 表示在原来的基础上修改
'''

例:

import pandas as pd
df = pd.read_csv('/text.xlsx')
# 删除第0行和第1行
df.drop(labels=[0,1],axis=0)

# 删除列名为 age 的列
df.drop(axis=1,columns=age)

到此这篇关于pandas中NaN缺失值的处理方法的文章就介绍到这了,更多相关pandas NaN缺失值内容请搜索python博客以前的文章或继续浏览下面的相关文章希望大家以后多多支持python博客!

标签:pandas  numpy  

<< 上一篇 下一篇 >>

搜索

推荐资源

  Powered By python教程网   鲁ICP备18013710号
python博客 - 小白学python最友好的网站!