时间:2020-07-23 python教程 查看: 1148
摘要:
近几天在做一个东西,其中需要对图像中的文字进行识别,看了前辈们的文章,找到两个较简单的方法:使用python的pytesseract库和调用百度AI平台接口。写下这篇文章做一个比较简短的记录和学习,后期如果有新内容再行补充。
1、使用python的pytesseract库
主要是安装库,比较简单,直接使用 pip install 安装即可;另外,如果进行中文识别,需要下载语言包,并配置好相应环境,具体操作可以进行百度,教程有不少。因为这个识别方法比较简单(但效果并不是很理想),下面直接贴出测试代码:
import pytesseract
from PIL import Image
img = Image.open('./testImages/test01.jpg')
pytesseract.pytesseract.tesseract_cmd = 'C:/Program Files (x86)/Tesseract-OCR/tesseract.exe'
s = pytesseract.image_to_string(img, lang='chi_sim') #不加lang参数的话,默认进行英文识别
print(s)
2、调用百度AI平台接口(有调用次数限制,通用50000次/天,学习完全够用)
这个类似于调用接口实现词法分析等操作,首先通过注册获得APP_ID、API_KEY、SECRET_KEY,然后调用接口实现OCR。由于是在线API,如果图片体积比较大,涉及到上传数据、分析数据、返回数据等一系列操作,需要一定的时间。此外,因为返回的是 dict 类型数据,所以需要对结果进行处理(这套算法是按行识别文字的,准确率较高,基本可以直接将结果进行提取和拼接)。实现起来比较简单,下面直接贴出代码:
from aip import AipOcr
APP_ID = '00000000'
API_KEY = '00000000000000000000'
SECRET_KEY = '00000000000000000000'
client = AipOcr(APP_ID, API_KEY, SECRET_KEY)
def get_file_content(filePath):
with open(filePath, 'rb') as fp:
return fp.read()
def image2text(fileName):
image = get_file_content(fileName)
dic_result = client.basicGeneral(image)
res = dic_result['words_result']
result = ''
for m in res:
result = result + str(m['words'])
return result
getresult = image2text('./test01.jpg')
print(getresult)
小结:
主要是初次接触OCR这个领域所做的一些笔记,后续再深入进行学习。
python实现的ocr接口
```python
import pytesseract
import requests
from PIL import Image
from PIL import ImageFilter
from StringIO import StringIO
from werkzeug.utils import secure_filename
from gevent import monkey
from gevent.pywsgi import WSGIServer
monkey.patch_all()
from flask import Flask,render_template,jsonify,request,send_from_directory
import time
import os
import base64
import random
app = Flask(name) UPLOAD_FOLDER='upload' app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER basedir = os.path.abspath(os.path.dirname(file)) ALLOWED_EXTENSIONS = set(['png','jpg','JPG','PNG'])
def allowed_file(filename): return '.' in filename and filename.rsplit('.',1)[1] in ALLOWED_EXTENSIONS
@app.route('/',methods=['GET'],strict_slashes=False) def indexpage(): return render_template('index.html')
@app.route('/',methods=['POST'],strict_slashes=False) def api_upload(): log = open("error.log","w+") file_dir = os.path.join(basedir, app.config['UPLOAD_FOLDER']) if not os.path.exists(file_dir): os.makedirs(file_dir) print request.headers print >> log, request.headers f = request.files['file'] postLang = request.form.get("lang", type=str)
log.close()
if f and allowed_file(f.filename): fname = secure_filename(f.filename) ext = fname.rsplit('.',1)[1] unix_time = int(time.time()) new_filename = str( random.randrange(0, 10001, 2))+str(unix_time)+'.'+ext f.save(os.path.join(file_dir,new_filename)) if cmp(postLang, "chi_sim"): strboxs = pytesseract.image_to_boxes(Image.open("/var/OCRhtml/upload/" + new_filename), lang="chi_sim") strdata = pytesseract.image_to_string(Image.open("/var/OCRhtml/upload/" + new_filename), lang="chi_sim") print "Chinese" else: strboxs = pytesseract.image_to_boxes(Image.open("/var/OCRhtml/upload/"+new_filename)) strdata = pytesseract.image_to_string(Image.open("/var/OCRhtml/upload/"+new_filename)) return jsonify({"errno":0, "msg":"succeed ","data":strdata,"info":strboxs}) else: return jsonify({"errno":1001, "errmsg":u"failed"})
if name == 'main': http_server = WSGIServer(('', 80), app) http_server.serve_forever()```
到此这篇关于基于Python的OCR实现示例的文章就介绍到这了,更多相关Python OCR 内容请搜索python博客以前的文章或继续浏览下面的相关文章希望大家以后多多支持python博客!