首页 > 人工智能

python简单实现最大似然估计&scipy库的使用详解

时间:2020-07-19 人工智能 查看: 3146

python简单实现最大似然估计

1、scipy库的安装

wim+R输入cmd,然后cd到python的pip路径,即安装:pip install scipy即可

2、导入scipy库

from scipy.sats import norm

导入scipy.sats中的norm

3、案例分析

from scipy.stats import norm
import matplotlib.pyplot as plt
import numpy as np

'''
norm.cdf 返回对应的累计分布函数值
norm.pdf 返回对应的概率密度函数值
norm.rvs 产生指定参数的随机变量
norm.fit 返回给定数据下,各参数的最大似然估计(MLE)值
'''
x_norm = norm.rvs(size=200)
#在这组数据下,正态分布参数的最大似然估计值
x_mean, x_std = norm.fit(x_norm)
print ('mean, ', x_mean)
print ('x_std, ', x_std)
plt.hist(x_norm, normed=True, bins=15)#归一化直方图(用出现频率代替次数),将划分区间变为 20(默认 10)
x = np.linspace(-3,3,50)#在在(-3,3)之间返回均匀间隔的50个数字。
plt.plot(x, norm.pdf(x), 'r-')
plt.show()

运行如下:

补充知识:python hypergeom.cdf函数理解

导入函数

hypergeom.cdf函数是scipy库中的。

from scipy.stats import hypergeom

含义

与scipy帮助文档中的字母定义一致,即用hypergeom.cdf(k,M,n,N)来解释该函数的用法。

hypergeom是用于计算超几何分布的,其中cdf表示的是累计分布函数。这里用超几何分布的一般意义来解释,hypergeom.cdf表示:总共有M件产品,n件次品,从M件中随机挑出N件,这N件中最多包含n件中的k件的概率(也可以理解为M-n件产品中至少选到N-k件的概率)。

以上这篇python简单实现最大似然估计&scipy库的使用详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持python博客。

展开全文
上一篇:Python unittest单元测试框架及断言方法
下一篇:Python实现AI换脸功能
输入字:
相关知识
详解appium自动化测试工具(monitor、uiautomatorviewer)

本文章主要介绍了详解appium自动化测试工具(monitor、uiautomatorviewer),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

Python测试框架:pytest学习笔记

本文章主要介绍了Python测试框架:pytest的相关资料,帮助大家更好的利用python进行单元测试,感兴趣的朋友可以了解下

appium+python自动化配置(adk、jdk、node.js)

本文章主要介绍了appium+python自动化配置(adk、jdk、node.js),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

python openCV实现摄像头获取人脸图片

这篇文章主要为大家详细介绍了python openCV实现摄像头获取人脸图片,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下