首页 > python教程

python聚类算法选择方法实例

时间:2021-08-17 python教程 查看: 1470

说明

1、如果数据集是高维度的,选择谱聚类是子空间的一种。

2、如果数据量是中小型的,比如在100W条以内,K均值会是更好的选择;如果数据量超过100W条,可以考虑使用MiniBatchKMeans。

3、如果数据集中有噪声(离群点),使用基于密度的DBSCAN可以有效解决这个问题。

4、若追求更高的分类准确性,则选择谱聚类比K均值准确性更好。

实例

import numpy as np
import matplotlib.pyplot as plt


# 数据准备
raw_data = np.loadtxt('./pythonlearn/cluster.txt') # 导入数据文件
X = raw_data[:, :-1] # 分割要聚类的数据
y_true = raw_data[:, -1]

print(X)

知识点扩充:

聚类算法

有许多类型的聚类算法。许多算法在特征空间中的示例之间使用相似度或距离度量,以发现密集的观测区域。因此,在使用聚类算法之前,扩展数据通常是良好的实践。

聚类分析的所有目标的核心是被群集的各个对象之间的相似程度(或不同程度)的概念。聚类方法尝试根据提供给对象的相似性定义对对象进行分组。

一些聚类算法要求您指定或猜测数据中要发现的群集的数量,而另一些算法要求指定观测之间的最小距离,其中示例可以被视为“关闭”或“连接”。因此,聚类分析是一个迭代过程,在该过程中,对所识别的群集的主观评估被反馈回算法配置的改变中,直到达到期望的或适当的结果。scikit-learn 库提供了一套不同的聚类算法供选择。下面列出了10种比较流行的算法:

  • 亲和力传播
  • 聚合聚类
  • BIRCH
  • DBSCAN
  • K-均值
  • Mini-Batch K-均值
  • Mean Shift
  • OPTICS
  • 光谱聚类
  • 高斯混合

每个算法都提供了一种不同的方法来应对数据中发现自然组的挑战。没有最好的聚类算法,也没有简单的方法来找到最好的算法为您的数据没有使用控制实验。在本教程中,我们将回顾如何使用来自 scikit-learn 库的这10个流行的聚类算法中的每一个。这些示例将为您复制粘贴示例并在自己的数据上测试方法提供基础。我们不会深入研究算法如何工作的理论,也不会直接比较它们。让我们深入研究一下。

到此这篇关于python聚类算法选择方法实例的文章就介绍到这了,更多相关python聚类算法如何选择内容请搜索python博客以前的文章或继续浏览下面的相关文章希望大家以后多多支持python博客!

展开全文
上一篇:NumPy索引与切片的用法示例总结
下一篇:怎么处理Python分割字符串时有多个分隔符
输入字:
相关知识
Python 实现图片色彩转换案例

我们在看动漫、影视作品中,当人物在回忆过程中,体现出来的画面一般都是黑白或者褐色的。本文将提供将图片色彩转为黑白或者褐色风格的案例详解,感兴趣的小伙伴可以了解一下。

python初学定义函数

这篇文章主要为大家介绍了python的定义函数,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助,希望能够给你带来帮助

图文详解Python如何导入自己编写的py文件

有时候自己写了一个py文件,想要把它导入到另一个py文件里面,所以下面这篇文章主要给大家介绍了关于Python如何导入自己编写的py文件的相关资料,需要的朋友可以参考下

python二分法查找实例代码

二分算法是一种效率比较高的查找算法,其输入的是一个有序的元素列表,如果查找元素包含在列表中,二分查找返回其位置,否则返回NONE,下面这篇文章主要给大家介绍了关于python二分法查找的相关资料,需要的朋友可以参考下