时间:2021-05-14 python教程 查看: 887
一 pandas DataFrame一列赋值问题
说明,把b的列赋值给a
如下代码
import pandas as pd
import numpy as np
a = pd.DataFrame(np.arange(16).reshape(4,4),index=list('abcd'),columns=list('wxyz'))
b = pd.DataFrame(np.array([11,22,33,44]),index=list('abcd'),columns=['m'])
a['m'] = b['m']
print(a)
上述代码结果如下
w x y z m
a 0 1 2 3 11
b 4 5 6 7 22
c 8 9 10 11 33
d 12 13 14 15 44
情况一是最基本的情况,结果也符合预期,之所以符合预期是因为a,b都设有同样的index,赋值操作按照index来到。如果b不设置Index,而是使用默认的index呢?
代码如下
import pandas as pd
import numpy as np
a = pd.DataFrame(np.arange(16).reshape(4,4),index=list('abcd'),columns=list('wxyz'))
b = pd.DataFrame(np.array([11,22,33,44]),columns=['m'])
a['m'] = b['m']
print(a)
结果如下
w x y z m
a 0 1 2 3 NaN
b 4 5 6 7 NaN
c 8 9 10 11 NaN
d 12 13 14 15 NaN
情况二,结果超出了想象,b中的index为0,1,2,3与a中的index(‘a',‘b',‘c',‘d')不同,在赋值的过程中,是按照a中的index在b中找index相同位置的值,由于index不同,因此,给a赋值为NaN
代码如下
import pandas as pd
import numpy as np
a = pd.DataFrame(np.arange(16).reshape(4,4),index=list('abcd'),columns=list('wxyz'))
b = pd.DataFrame(np.array([11,22,33,44]),index=list('arpb'),columns=['m'])
a['m'] = b['m']
print(a)
结果如下
w x y z m
a 0 1 2 3 11.0
b 4 5 6 7 44.0
c 8 9 10 11 NaN
d 12 13 14 15 NaN
由情况三结果可知,只有Index相同的行,赋值才能成功
从以上可以看出,Pandas DataFrame严格按照Index进行赋值,如果Index不同的话,则赋值为NaN
补充:python编程过程中DataFrame修改特定单元格值后原数据不变的一个解决方案
最近在参加了一个比赛,里面设计到数据清洗的工作,需要对一些异常值作出修改,往常我都是这样操作的
df[condition]['column'].iloc[0:3] = ......
或者
df[condition]['column'][0:3] = ......
里面condition代表满足条件的逻辑表达式,column表示列名
一般还是管用的,但偶尔会出现错误,主要是df[condition]这种表达在python里面是不够规范的,因此运行以后单元格容易赋值失败。在尝试了很多种方法之后,最后还是使用规范的loc或者iloc表达
df.loc[[row condition],['column']] = ......
例如:
NA.loc[[23,29,49],'北美整体规模'] = ......
或者
df.iloc[np.where(condition),[1:3]]
注意loc里面接的是具体的行列名称,iloc里面接的是满足条件的行列名称所对应的位置数字列表,切忌弄混!
以上为个人经验,希望能给大家一个参考,也希望大家多多支持python博客。如有错误或未考虑完全的地方,望不吝赐教。