首页 > python教程

详解tf.device()指定tensorflow运行的GPU或CPU设备实现

时间:2021-03-29 python教程 查看: 852

在tensorflow中,我们可以使用 tf.device() 指定模型运行的具体设备,可以指定运行在GPU还是CUP上,以及哪块GPU上。

设置使用GPU

使用 tf.device('/gpu:1') 指定Session在第二块GPU上运行:

import tensorflow as tf

with tf.device('/gpu:1'):
  v1 = tf.constant([1.0, 2.0, 3.0], shape=[3], name='v1')
  v2 = tf.constant([1.0, 2.0, 3.0], shape=[3], name='v2')
  sumV12 = v1 + v2

  with tf.Session(config=tf.ConfigProto(log_device_placement=True)) as sess:
    print sess.run(sumV12)

ConfigProto() 中参数 log_device_placement=True  会打印出执行操作所用的设备,以上输出:


如果安装的是GPU版本的tensorflow,机器上有支持的GPU,也正确安装了显卡驱动、CUDA和cuDNN,默认情况下,Session会在GPU上运行:

import tensorflow as tf

v1 = tf.constant([1.0, 2.0, 3.0], shape=[3], name='v1')
v2 = tf.constant([1.0, 2.0, 3.0], shape=[3], name='v2')
sumV12 = v1 + v2

with tf.Session(config=tf.ConfigProto(log_device_placement=True)) as sess:
  print sess.run(sumV12)

默认在GPU:0上执行:


设置使用cpu

tensorflow中不同的GPU使用/gpu:0和/gpu:1区分,而CPU不区分设备号,统一使用 /cpu:0

import tensorflow as tf

with tf.device('/cpu:0'):
  v1 = tf.constant([1.0, 2.0, 3.0], shape=[3], name='v1')
  v2 = tf.constant([1.0, 2.0, 3.0], shape=[3], name='v2')
  sumV12 = v1 + v2

  with tf.Session(config=tf.ConfigProto(log_device_placement=True)) as sess:
    print sess.run(sumV12)

到此这篇关于详解tf.device()指定tensorflow运行的GPU或CPU设备实现的文章就介绍到这了,更多相关tensorflow运行GPU或CPU内容请搜索python博客以前的文章或继续浏览下面的相关文章希望大家以后多多支持python博客!

展开全文
上一篇:安装不同版本的tensorflow与models方法实现
下一篇:Python中Qslider控件实操详解
输入字:
相关知识
Python 实现图片色彩转换案例

我们在看动漫、影视作品中,当人物在回忆过程中,体现出来的画面一般都是黑白或者褐色的。本文将提供将图片色彩转为黑白或者褐色风格的案例详解,感兴趣的小伙伴可以了解一下。

python初学定义函数

这篇文章主要为大家介绍了python的定义函数,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助,希望能够给你带来帮助

图文详解Python如何导入自己编写的py文件

有时候自己写了一个py文件,想要把它导入到另一个py文件里面,所以下面这篇文章主要给大家介绍了关于Python如何导入自己编写的py文件的相关资料,需要的朋友可以参考下

python二分法查找实例代码

二分算法是一种效率比较高的查找算法,其输入的是一个有序的元素列表,如果查找元素包含在列表中,二分查找返回其位置,否则返回NONE,下面这篇文章主要给大家介绍了关于python二分法查找的相关资料,需要的朋友可以参考下