时间:2021-03-18 python教程 查看: 923
数据库间数据同步方式很多,在上篇博文中有总结。本文是用py程序实现数据同步。
A数据库中有几十张表,要汇聚到B数据库中,且表结构一致,需要准实时的进行数据同步,用工具实现时对其控制有限且配置较繁琐,故自写程序,可自由设置同步区间,记录自己想要的日志
本代码实现功能简单,采用面向过程,有需求的同学可以自己优化成面向对象方式,在日志这块缺少数据监控,可根据需求增加。主要注意点:
1、数据抽取时采用区间抽取(按时间区间)、流式游标迭代器+fetchone,避免内存消耗
2、在数据插入时采用executemany(list),加快插入效率
import pymysql
import os
import datetime,time
def update_time(content):
with open(filepathtime, 'w') as f:
f.writelines(content)
def recode_log(content):
with open(filepathlog, 'a') as f:
f.writelines(content)
def transferdata():
#1、获取需要抽取的表,抽取数据的时间点
with open(filepathtime, 'r') as f:
lines = f.readlines() # 读取所有数据
print("需要同步的表信息",lines)
for line in lines:
startdatetime = time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time()))
tablename_list =line.split(',')
#print(tablename_list)
#print(tablename_list[-1])
tablename_list[-1] = tablename_list[-1].replace('\n','')
#print(tablename_list)
tablename = tablename_list[0]
updatetime = tablename_list[1]
#print(tablename,updatetime)
#2、抽取此表此时间点的数据,同步
updatetime_s = datetime.datetime.strptime(updatetime, '%Y-%m-%d %H:%M:%S')
updatetime_e = (updatetime_s + datetime.timedelta(hours=1)).strftime("%Y-%m-%d %H:%M:%S")
#print(updatetime_s)
#print(q_sql)
db = pymysql.connect(host=host_o, port=port_o, user=user_o, passwd=passwd_o, db=db_o)
cursor = db.cursor()
q_sql = "select a,b,c from %s where c >= '%s' " % \
(tablename, updatetime_s)
#2.1 首先判断下原表中是否有待同步数据,若有则同步且更新同步的时间参考点,若没有则不同步且不更新同步的时间参考点
try:
cursor.execute(q_sql)
results = cursor.fetchone()
#print(results) #返回是元组
#print("查询原表数据成功!",tablename)
except BaseException as e:
print("查询原表数据失败!",tablename, str(e))
#记录异常日志
updatetime_n = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time()))
eachline_log = updatetime_n + '[erro]:' + tablename + str(e) + '\n'
content_log.append(eachline_log)
recode_log(content_log)
db.close()
if results:
print("===============================================================================")
print("有数据可同步",tablename)
db = pymysql.connect(host=host_o, port=port_o, user=user_o, passwd=passwd_o, db=db_o, charset='utf8', cursorclass=pymysql.cursors.SSDictCursor)
cursor = db.cursor()
q_sql1 = "select a,b,c from %s where c >= '%s' and c < '%s' " % \
(tablename, updatetime_s, updatetime_e)
#print(q_sql1)
result_list = []
try:
# startdatetime = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
cursor.execute(q_sql1)
#results = cursor.fetchall()
# enddatetime = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
# print(results) #返回是元组
#使用流式游标迭代器+fetchone,减少内存消耗
while True:
result = cursor.fetchone()
if not result:
print("此区间无数据", q_sql1)
break
else:
one_list = list(result.values())
# print(result_list)
result_list.append(one_list)
print(result_list) #返回是列表
#print("查询数据成功!", tablename)
except BaseException as e:
print("查询数据失败!", tablename, str(e))
# 记录异常日志
updatetime_n = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time()))
eachline_log = updatetime_n + '[erro]:' + tablename + str(e) + '\n'
content_log.append(eachline_log)
recode_log(content_log)
db.close()
results_len = (len(result_list))
if results_len>0:
#3、将数据插入到目标表中,利用list提高插入效率
i_sql = "insert into table_t(a,b,c) values (%s,%s,%s)"
#print(i_sql)
db = pymysql.connect(host=host_d, port=port_d, user=user_d, passwd=passwd_d, db=db_d)
cursor = db.cursor()
try:
#startdatetime = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
cursor.executemany(i_sql, result_list)
db.commit()
#enddatetime = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
print("插入成功!",tablename)
except BaseException as e:
db.rollback()
print("插入失败!", tablename,str(e))
#记录异常日志
updatetime_n = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time()))
eachline_log = updatetime_n + '[erro]:' + tablename + str(e) + '\n'
content_log.append(eachline_log)
recode_log(content_log)
db.close()
enddatetime = time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time()))
#4、如果有数据同步,则更新参考点时间为下一个节点时间
eachline_time = tablename+','+updatetime_e+'\n' #此时间点是下一个时间点updatetime_e
content_time.append(eachline_time)
print("更新表时间点",content_time)
# 5、记录成功日志
eachline_log = enddatetime + '[success]:' + tablename + '开始时间' + startdatetime + \
'结束时间' + enddatetime + ',同步数据量'+str(results_len)+',当前参考点' + updatetime_e + '\n'
content_log.append(eachline_log)
print("日志信息",content_log)
#print("===============================================================================")
else:
print("===============================================================================")
print("无数据可同步",tablename)
#db.close()
enddatetime = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time()))
# 4、如果无数据同步,则参考点时间不更新
eachline_time = tablename + ',' + updatetime + '\n' #此时间点还是原时间updatetime
content_time.append(eachline_time)
print("不更新表时间点",content_time)
# 5、成功日志信息
eachline_log = enddatetime + '[success]:' + tablename + '开始时间' + startdatetime + \
'结束时间' + enddatetime + ',同步数据量0'+ ',当前参考点' + updatetime_e + '\n'
content_log.append(eachline_log)
print("日志信息",content_log)
#print("===============================================================================")
#更新配置文件,记录日志
update_time(content_time)
recode_log(content_log)
if __name__ == '__main__':
filepathtime = 'D:/test/table-time.txt'
filepathlog = 'D:/test/table-log.txt'
host_o = 'localhost'
port_o = 3306
user_o = 'root'
passwd_o = 'root@123'
db_o = 'csdn'
host_d = 'localhost'
port_d = 3306
user_d = 'root'
passwd_d = 'root@123'
db_d = 'csdn'
content_time = []
content_log = []
transferdata()
#每5分钟执行一次同步
# while True:
# transferdata()
# time.sleep(300)
table-time.txt配置文件,格式说明:
每行包括源库表名、此表的最小时间time,以逗号分隔
若多个表,可配置多个时间
每次脚本执行后,同步更新时间time。时间间隔设置为1小时,可根据情况在updatetime_e中对增量进行修改
table-log.txt
记录每次同步任务执行的结果,或执行中发生异常的日志
此文件需要定期进行清理
到此这篇关于python实现不同数据库间数据同步功能的文章就介绍到这了,更多相关python实现数据同步内容请搜索python博客以前的文章或继续浏览下面的相关文章希望大家以后多多支持python博客!