时间:2021-01-28 python教程 查看: 835
1。 将本地sql文件写入mysql数据库
本文写入的是python数据库的taob表
source [本地文件]
其中总数据为9616行,列分别为title,link,price,comment
2。使用python链接并读取数据
查看数据概括
#-*- coding:utf-8 -*-
#author:M10
import numpy as np
import pandas as pd
import matplotlib.pylab as plt
import mysql.connector
conn = mysql.connector.connect(host='localhost',
user='root',
passwd='123456',
db='python')#链接本地数据库
sql = 'select * from taob'#sql语句
data = pd.read_sql(sql,conn)#获取数据
print(data.describe())
说明数据的导入是正确的,简单的分析发现问题并不是这么简单,因为comment均值562可能偏大,最大评论数454037也可能出现错误,price价格为0也不太可能出现。
price comment
count 9616.00000 9616.000000
mean 64.49324 562.239601
std 176.10901 6078.909643
min 0.00000 0.000000
25% 20.00000 16.000000
50% 36.00000 58.000000
75% 66.00000 205.000000
max 7940.00000 454037.000000
3。缺失值处理
将价格为0的值设置为中位数36
#-*- coding:utf-8 -*-
#author:M10
import numpy as np
import pandas as pd
import matplotlib.pylab as plt
import mysql.connector
conn = mysql.connector.connect(host='localhost',
user='root',
passwd='123456',
db='python')#链接本地数据库
sql = 'select * from taob'#sql语句
data = pd.read_sql(sql,conn)#获取数据
data['price'][data['price']==0]=None
x = 0
for i in data.columns:
for j in range(len(data)):
if (data[i].isnull()) [j]:
data[i][j]='36'
x+=1
print(x)
#44
结果显示修改了44行的数据。
4。异常值处理
#-*- coding:utf-8 -*-
#author:M10
import numpy as np
import pandas as pd
import matplotlib.pylab as plt
import mysql.connector
conn = mysql.connector.connect(host='localhost',
user='root',
passwd='123456',
db='python')#链接本地数据库
sql = 'select * from taob'#sql语句
data = pd.read_sql(sql,conn)#获取数据
#缺失值处理
data['price'][data['price']==0]=None
x = 0
for i in data.columns:
for j in range(len(data)):
if (data[i].isnull()) [j]:
data[i][j]='36'
x+=1
print(x)
#异常值处理
#绘制散点图,价格为横轴
data1 = data.T#转置
price = data1.values[2]
comment = data1.values[3]
plt.plot(price,comment,'o')
plt.show()
#print(price)
结果如下图,价格为0左右时comment很大可能为异常值,comments为0时,价格极大这个有可能的。
接下来处理评论数异常值,假设异常值分割线设置为20w,
#-*- coding:utf-8 -*-
#author:M10
import numpy as np
import pandas as pd
import matplotlib.pylab as plt
import mysql.connector
conn = mysql.connector.connect(host='localhost',
user='root',
passwd='123456',
db='python')#链接本地数据库
sql = 'select * from taob'#sql语句
data = pd.read_sql(sql,conn)#获取数据
#缺失值处理
data['price'][data['price']==0]=None
x = 0
for i in data.columns:
for j in range(len(data)):
if (data[i].isnull()) [j]:
data[i][j]='36'
x+=1
print(x)
#异常值处理
da = data.values#重新赋值data
#异常值处理,将commments大于200000的数据comments设置为58
cont_clou = len(da)#获取行数
#遍历数据进行处理
for i in range(0,cont_clou):
if(data.values[i][3]>200000):
#print(data.values[i][3])
da[i][3]='58'
#print(da[i][3])
#绘制散点图,价格为横轴
data1 = da.T#转置
price = data1[2]
comment = data1[3]
plt.plot(price,comment,'o')
plt.xlabel('price')
plt.ylabel('comments')
plt.show()
处理后的输出结果为:
以上这篇python实现数据清洗(缺失值与异常值处理)就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持python博客。