首页 > python教程

用openCV和Python 实现图片对比,并标识出不同点的方式

时间:2021-01-06 python教程 查看: 997

最近项目中需要实现两组图片对比,并能将两者的区别标识出来。

在网上搜索一大堆找到一篇大神的文章,最终实现该功能,在这里记录下:

想要实现此demo,首先我们得确保电脑上已安装 openCV 和 Python 两个工具以及scikit-image和imutils两个库:

安装方法,在这里不多说,我安装的是Python3.6 和openCV2,安装方法网上自行百度谷歌;

进入正题:

新建一个新的Python文件并命名为copmarePicture.py,写入下面的代码:

from skimage.measure import compare_ssim
#~ import skimage as ssim
import argparse
import imutils
import cv2

加载两张图片并将他们转换为灰度:

imageA = cv2.imread("D:/111test/111.png")
imageB = cv2.imread("D:/111test/444.png")

grayA = cv2.cvtColor(imageA,cv2.COLOR_BGR2GRAY)
grayB = cv2.cvtColor(imageB,cv2.COLOR_BGR2GRAY)

接下来,计算两个灰度图像之间的结构相似度指数:

(score,diff) = compare_ssim(grayA,grayB,full = True)
diff = (diff *255).astype("uint8")
print("SSIM:{}".format(score))

找到不同点的轮廓以致于我们可以在被标识为“不同”的区域周围放置矩形:

thresh = cv2.threshold(diff,0,255,cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
cnts = cv2.findContours(thresh.copy(),cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if imutils.is_cv2() else cnts[1]

找到一系列区域,在区域周围放置矩形:

for c in cnts:                                                          
 (x,y,w,h) = cv2.boundingRect(c)                                                
 cv2.rectangle(imageA,(x,y),(x+w,y+h),(0,0,255),2)                                           
 cv2.rectangle(imageB,(x,y),(x+w,y+h),(0,0,255),2)

用cv2.imshow 展现最终对比之后的图片, cv2.imwrite 保存最终的结果图片

cv2.imshow("Modified",imageB)
cv2.imwrite("haha2.png",imageB)
cv2.waitKey(0)

到这已经实现两张图片的对比并标识出不同。结果如下所示:(图1图2对比,图3为对标结果

以上这篇用openCV和Python 实现图片对比,并标识出不同点的方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持python博客。

展开全文
上一篇:python类中super() 的使用解析
下一篇:Python文本处理简单易懂方法解析
输入字:
相关知识
Python 实现图片色彩转换案例

我们在看动漫、影视作品中,当人物在回忆过程中,体现出来的画面一般都是黑白或者褐色的。本文将提供将图片色彩转为黑白或者褐色风格的案例详解,感兴趣的小伙伴可以了解一下。

python初学定义函数

这篇文章主要为大家介绍了python的定义函数,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助,希望能够给你带来帮助

图文详解Python如何导入自己编写的py文件

有时候自己写了一个py文件,想要把它导入到另一个py文件里面,所以下面这篇文章主要给大家介绍了关于Python如何导入自己编写的py文件的相关资料,需要的朋友可以参考下

python二分法查找实例代码

二分算法是一种效率比较高的查找算法,其输入的是一个有序的元素列表,如果查找元素包含在列表中,二分查找返回其位置,否则返回NONE,下面这篇文章主要给大家介绍了关于python二分法查找的相关资料,需要的朋友可以参考下