时间:2021-01-05 python教程 查看: 692
引言
什么是数据结构?
数据结构按照其逻辑结构可分为线性结构、树结构、图结构
数组
在python中是没有数组的,有的是列表,它是一种基本的数据结构类型。
实现
class Array(object):
def __init__(self, size=32):
"""
:param size: 长度
"""
self._size = size
self._items = [None] * size
# 在执行array[key]时执行
def __getitem__(self, index):
return self._items[index]
# 在执行array[key] = value 时执行
def __setitem__(self, index, value):
self._items[index] = value
# 在执行len(array) 时执行
def __len__(self):
return self._size
# 清空数组
def clear(self, value=None):
for i in range(len(self._items)):
self._items[i] = value
# 在遍历时执行
def __iter__(self):
for item in self._items:
yield item
使用
a = Array(4)
a[0] = 1
print(a[0]) # 1
a.clear()
print(a[0]) # None
a[0] = 1
a[1] = 2
a[3] = 4
for i in a:
print(i) # 1, 2, None, 4
链表
链表中每一个元素都是一个对象,每一个对象被称为节点,包含有数据域value和指向下一个节点的指针next。
通过各个节点直接的相互链接,最终串成一个链表。
实现
class Node(object):
def __init__(self, value=None, next=None):
self.value, self.next = value, next
class LinkedList(object):
def __init__(self, size=None):
"""
:param size: int or None, 如果None,则该链表可以无限扩充
"""
self.size = size
# 定义一个根节点
self.root = Node()
# 尾节点始终指向最后一个节点
self.tail_node = None
self.length = 0
def __len__(self):
return self.length
def append(self, value):
# size 不为 None, 且长度大于等于size则链表已满
if self.size and len(self) >= self.size:
raise Exception("LinkedList is full")
# 构建节点
node = Node(value)
tail_node = self.tail_node
# 判断尾节点是否为空
if tail_node is None:
# 还没有 append 过,length = 0, 追加到 root 后
self.root.next = node
else:
# 否则追加到最后一个节点的后边,并更新最后一个节点是 append 的节点
tail_node.next = node
# 把尾节点指向node
self.tail_node = node
# 长度加一
self.length += 1
# 往左边添加
def append_left(self, value):
if self.size and len(self) >= self.size:
raise Exception("LinkedList is full")
# 构建节点
node = Node(value)
# 链表为空,则直接添加设置
if self.tail_node is None:
self.tail_node = node
# 设置头节点为根节点的下一个节点
head_node = self.root.next
# 把根节点的下一个节点指向node
self.root.next = node
# 把node的下一个节点指向原头节点
node.next = head_node
# 长度加一
self.length += 1
# 遍历节点
def iter_node(self):
# 第一个节点
current_node = self.root.next
# 不是尾节点就一直遍历
while current_node is not self.tail_node:
yield current_node
# 移动到下一个节点
current_node = current_node.next
# 尾节点
if current_node is not None:
yield current_node
# 实现遍历方法
def __iter__(self):
for node in self.iter_node():
yield node.value
# 删除指定元素
def remove(self, value):
# 删除一个值为value的节点,只要使该节点的前一个节点的next指向该节点的下一个
# 定义上一个节点
perv_node = self.root
# 遍历链表
for current_node in self.iter_node():
if current_node.value == value:
# 把上一个节点的next指向当前节点的下一个节点
perv_node.next = current_node.next
# 判断当前节点是否是尾节点
if current_node is self.tail_node:
# 更新尾节点 tail_node
# 如果第一个节点就找到了,把尾节点设为空
if perv_node is self.root:
self.tail_node = None
else:
self.tail_node = perv_node
# 删除节点,长度减一,删除成功返回1
del current_node
self.length -= 1
return 1
else:
perv_node = current_node
# 没找到返回-1
return -1
# 查找元素,找到返回下标,没找到返回-1
def find(self, value):
index = 0
# 遍历链表,找到返回index,没找到返回-1
for node in self.iter_node():
if node.value == value:
return index
index += 1
return -1
# 删除第一个节点
def popleft(self):
# 链表为空
if self.root.next is None:
raise Exception("pop from empty LinkedList")
# 找到第一个节点
head_node = self.root.next
# 把根节点的下一个节点,指向第一个节点的下一个节点
self.root.next = head_node.next
# 获取删除节点的value
value = head_node.value
# 如果第一个节点是尾节点, 则把尾节点设为None
if head_node is self.tail_node:
self.tail_node = None
# 长度减一,删除节点,返回该节点的值
self.length -= 1
del head_node
return value
# 清空链表
def clear(self):
for node in self.iter_node():
del node
self.root.next = None
self.tail_node = None
self.length = 0
# 反转链表
def reverse(self):
# 第一个节点为当前节点,并把尾节点指向当前节点
current_node = self.root.next
self.tail_node = current_node
perv_node = None
while current_node:
# 下一个节点
next_node = current_node.next
# 当前节点的下一个节点指向perv_node
current_node.next = perv_node
# 当前节点的下一个节点为空,则把根节点的next指向当前节点
if next_node is None:
self.root.next = current_node
# 把当前节点赋值给perv_node
perv_node = current_node
# 把下一个节点赋值为当前节点
current_node = next_node
使用
ll = LinkedList()
ll.append(0)
ll.append(1)
ll.append(2)
ll.append(3)
print(len(ll)) # 4
print(ll.find(2)) # 2
print(ll.find(-1)) # -1
ll.clear()
print(len(ll)) # 0
print(list(ll)) # []
循环链表
双链表中每一个节点有两个指针,一个指向后面节点、一个指向前面节点。
循环链表实现
class Node(object):
def __init__(self, value=None, prev=None, next=None):
self.value = value
self.prev = prev
self.next = next
class CircularDoubleLinkedList(object):
"""
双向循环链表
"""
def __init__(self, maxsize=None):
self.maxsize = maxsize
node = Node()
node.prev = node
node.next = node
self.root = node
self.length = 0
def __len__(self):
return self.length
def head_node(self):
return self.root.next
def tail_node(self):
return self.root.prev
# 遍历
def iter_node(self):
if self.root.next is self.root:
return
current_node = self.root.next
while current_node.next is not self.root:
yield current_node
current_node = current_node.next
yield current_node
def __iter__(self):
for node in self.iter_node():
yield node.value
# 反序遍历
def iter_node_reverse(self):
if self.root.prev is self.root:
return
current_node = self.root.prev
while current_node.prev is not self.root:
yield current_node
current_node = current_node.prev
yield current_node
def append(self, value):
if self.maxsize is not None and len(self) >= self.maxsize:
raise Exception("LinkedList is full")
node = Node(value)
tail_node = self.tail_node() or self.root
tail_node.next = node
node.prev = tail_node
node.next = self.root
self.root.prev = node
self.length += 1
def append_left(self, value):
if self.maxsize is not None and len(self) >= self.maxsize:
raise Exception("LinkedList is full")
node = Node(value)
if self.root.next is self.root:
self.root.next = node
node.prev = self.root
node.next = self.root
self.root.prev = node
else:
node.next = self.root.next
self.root.next.prev = node
self.root.next = node
node.prev = self.root
self.length += 1
def remove(self, node):
if node is self.root:
return
node.next.prev = node.prev
node.prev.next = node.next
self.length -= 1
return node
循环链表的使用
dll = CircularDoubleLinkedList()
dll.append(0)
dll.append(1)
dll.append(2)
assert list(dll) == [0, 1, 2]
print(list(dll)) # [0, 1, 2]
print([node.value for node in dll.iter_node()]) # [0, 1, 2]
print([node.value for node in dll.iter_node_reverse()]) # [2, 1, 0]
headnode = dll.head_node()
print(headnode.value) # 0
dll.remove(headnode)
print(len(dll)) # 2
队列
队列(Queue)是一个数据集合,仅允许在列表的一端进行插入,另一端进行删除。
进行插入的一端成为队尾(rear),插入动作称为进队或入队。
进行删除的一端称为队头(front),删除动作称为出队。
队列的性质:先进先出(First-in, First-out)。
基于数组实现环形队列
class Array(object):
def __init__(self, size=32):
"""
:param size: 长度
"""
self._size = size
self._items = [None] * size
# 在执行array[key]时执行
def __getitem__(self, index):
return self._items[index]
# 在执行array[key] = value 时执行
def __setitem__(self, index, value):
self._items[index] = value
# 在执行len(array) 时执行
def __len__(self):
return self._size
# 清空数组
def clear(self, value=None):
for i in range(len(self._items)):
self._items[i] = value
# 在遍历时执行
def __iter__(self):
for item in self._items:
yield item
class ArrayQueue(object):
def __init__(self, maxsize):
self.maxsize = maxsize
self.array = Array(maxsize)
self.head = 0
self.tail = 0
def __len__(self):
return self.head - self.tail
# 入队
def push(self, value):
if len(self) >= self.maxsize:
raise Exception("Queue is full")
self.array[self.head % self.maxsize] = value
self.head += 1
# 出队
def pop(self):
value = self.array[self.tail % self.maxsize]
self.tail += 1
return value
使用
size = 5
q = ArrayQueue(size)
for i in range(size):
q.push(i)
print(len(q)) # 5
print(q.pop()) # 0
print(q.pop()) # 1
基于双向链表实现双向队列
class Node(object):
def __init__(self, value=None, prev=None, next=None):
self.value = value
self.prev = prev
self.next = next
class CircularDoubleLinkedList(object):
"""
双向循环链表
"""
def __init__(self, maxsize=None):
self.maxsize = maxsize
node = Node()
node.prev = node
node.next = node
self.root = node
self.length = 0
def __len__(self):
return self.length
def head_node(self):
return self.root.next
def tail_node(self):
return self.root.prev
# 遍历
def iter_node(self):
if self.root.next is self.root:
return
current_node = self.root.next
while current_node.next is not self.root:
yield current_node
current_node = current_node.next
yield current_node
def __iter__(self):
for node in self.iter_node():
yield node.value
# 反序遍历
def iter_node_reverse(self):
if self.root.prev is self.root:
return
current_node = self.root.prev
while current_node.prev is not self.root:
yield current_node
current_node = current_node.prev
yield current_node
def append(self, value):
if self.maxsize is not None and len(self) >= self.maxsize:
raise Exception("LinkedList is full")
node = Node(value)
tail_node = self.tail_node() or self.root
tail_node.next = node
node.prev = tail_node
node.next = self.root
self.root.prev = node
self.length += 1
def append_left(self, value):
if self.maxsize is not None and len(self) >= self.maxsize:
raise Exception("LinkedList is full")
node = Node(value)
if self.root.next is self.root:
self.root.next = node
node.prev = self.root
node.next = self.root
self.root.prev = node
else:
node.next = self.root.next
self.root.next.prev = node
self.root.next = node
node.prev = self.root
self.length += 1
def remove(self, node):
if node is self.root:
return
node.next.prev = node.prev
node.prev.next = node.next
self.length -= 1
return node
# 双向队列
class Deque(CircularDoubleLinkedList):
# 从右边出队
def pop(self):
if len(self) <= 0:
raise Exception("stark is empty!")
tail_node = self.tail_node()
value = tail_node.value
self.remove(tail_node)
return value
# 从左边出队
def popleft(self):
if len(self) <= 0:
raise Exception("stark is empty!")
head_node = self.head_node()
value = head_node.value
self.remove(head_node)
return value
双向队列
两端都可以进行插入,删除。
基于双向链表实现双向队列
class Node(object):
def __init__(self, value=None, prev=None, next=None):
self.value = value
self.prev = prev
self.next = next
class CircularDoubleLinkedList(object):
"""
双向循环链表
"""
def __init__(self, maxsize=None):
self.maxsize = maxsize
node = Node()
node.prev = node
node.next = node
self.root = node
self.length = 0
def __len__(self):
return self.length
def head_node(self):
return self.root.next
def tail_node(self):
return self.root.prev
# 遍历
def iter_node(self):
if self.root.next is self.root:
return
current_node = self.root.next
while current_node.next is not self.root:
yield current_node
current_node = current_node.next
yield current_node
def __iter__(self):
for node in self.iter_node():
yield node.value
# 反序遍历
def iter_node_reverse(self):
if self.root.prev is self.root:
return
current_node = self.root.prev
while current_node.prev is not self.root:
yield current_node
current_node = current_node.prev
yield current_node
def append(self, value):
if self.maxsize is not None and len(self) >= self.maxsize:
raise Exception("LinkedList is full")
node = Node(value)
tail_node = self.tail_node() or self.root
tail_node.next = node
node.prev = tail_node
node.next = self.root
self.root.prev = node
self.length += 1
def append_left(self, value):
if self.maxsize is not None and len(self) >= self.maxsize:
raise Exception("LinkedList is full")
node = Node(value)
if self.root.next is self.root:
self.root.next = node
node.prev = self.root
node.next = self.root
self.root.prev = node
else:
node.next = self.root.next
self.root.next.prev = node
self.root.next = node
node.prev = self.root
self.length += 1
def remove(self, node):
if node is self.root:
return
node.next.prev = node.prev
node.prev.next = node.next
self.length -= 1
return node
# 双向队列
class Deque(CircularDoubleLinkedList):
# 从右边出队
def pop(self):
if len(self) <= 0:
raise Exception("stark is empty!")
tail_node = self.tail_node()
value = tail_node.value
self.remove(tail_node)
return value
# 从左边出队
def popleft(self):
if len(self) <= 0:
raise Exception("stark is empty!")
head_node = self.head_node()
value = head_node.value
self.remove(head_node)
return value
双向队列的使用
dq = Deque()
dq.append(1)
dq.append(2)
print(list(dq)) # [1, 2]
dq.appendleft(0)
print(list(dq)) # [0, 1, 2]
dq.pop()
print(list(dq)) # [0, 1]
dq.popleft()
print(list(dq)) # [1]
dq.pop()
print(len(dq)) # 0
栈
栈(Stack)是一个数据集合,可以理解为只能在一端插入或删除操作的链表。
栈的特点:后进先出(Last-in, First-out)
栈的概念:
栈的基本操作:
基于双向队列实现
class Node(object):
def __init__(self, value=None, prev=None, next=None):
self.value = value
self.prev = prev
self.next = next
class CircularDoubleLinkedList(object):
"""
双向循环链表
"""
def __init__(self, maxsize=None):
self.maxsize = maxsize
node = Node()
node.prev = node
node.next = node
self.root = node
self.length = 0
def __len__(self):
return self.length
def head_node(self):
return self.root.next
def tail_node(self):
return self.root.prev
# 遍历
def iter_node(self):
if self.root.next is self.root:
return
current_node = self.root.next
while current_node.next is not self.root:
yield current_node
current_node = current_node.next
yield current_node
def __iter__(self):
for node in self.iter_node():
yield node.value
# 反序遍历
def iter_node_reverse(self):
if self.root.prev is self.root:
return
current_node = self.root.prev
while current_node.prev is not self.root:
yield current_node
current_node = current_node.prev
yield current_node
def append(self, value):
if self.maxsize is not None and len(self) >= self.maxsize:
raise Exception("LinkedList is full")
node = Node(value)
tail_node = self.tail_node() or self.root
tail_node.next = node
node.prev = tail_node
node.next = self.root
self.root.prev = node
self.length += 1
def append_left(self, value):
if self.maxsize is not None and len(self) >= self.maxsize:
raise Exception("LinkedList is full")
node = Node(value)
if self.root.next is self.root:
self.root.next = node
node.prev = self.root
node.next = self.root
self.root.prev = node
else:
node.next = self.root.next
self.root.next.prev = node
self.root.next = node
node.prev = self.root
self.length += 1
def remove(self, node):
if node is self.root:
return
node.next.prev = node.prev
node.prev.next = node.next
self.length -= 1
return node
class Deque(CircularDoubleLinkedList):
def pop(self):
if len(self) <= 0:
raise Exception("stark is empty!")
tail_node = self.tail_node()
value = tail_node.value
self.remove(tail_node)
return value
def popleft(self):
if len(self) <= 0:
raise Exception("stark is empty!")
head_node = self.head_node()
value = head_node.value
self.remove(head_node)
return value
class Stack(object):
def __init__(self):
self.deque = Deque()
# 压栈
def push(self, value):
self.deque.append(value)
# 出栈
def pop(self):
return self.deque.pop()
使用
s = Stack()
s.push(0)
s.push(1)
s.push(2)
print(s.pop()) # 2
print(s.pop()) # 1
print(s.pop()) # 0
总结
以上所述是小编给大家介绍的使用python实现数组、链表、队列、栈的方法,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对python博客网站的支持!
如果你觉得本文对你有帮助,欢迎转载,烦请注明出处,谢谢!