首页 > python教程

Python 使用threading+Queue实现线程池示例

时间:2021-01-04 python教程 查看: 973

一、线程池

1、为什么需要使用线程池

1.1 创建/销毁线程伴随着系统开销,过于频繁的创建/销毁线程,会很大程度上影响处理效率。

记创建线程消耗时间T1,执行任务消耗时间T2,销毁线程消耗时间T3,如果T1+T3>T2,那说明开启一个线程来执行这个任务太不划算了!在线程池缓存线程可用已有的闲置线程来执行新任务,避免了创建/销毁带来的系统开销。

1.2 线程并发数量过多,抢占系统资源从而导致阻塞。

线程能共享系统资源,如果同时执行的线程过多,就有可能导致系统资源不足而产生阻塞的情况。

1.3 对线程进行一些简单的管理。

比如:延时执行、定时循环执行的策略等,运用线程池都能进行很好的实现。

2、Python中建立线程池的方法

2.1 使用threadpool模块,这是个python的第三方模块,支持python2和python3

2.2 使用concurrent.futures模块,这个模块是python3中自带的模块,python2.7以上版本也可以安装使用

2.3 自己构建一个线程池

二、队列(queue)

Queue模块提供的队列(FIFO)适用于多线程编程,在生产者(producer)和消费者(consumer)之间线程安全(thread-safe)地传递消息或其它数据,因此多个线程可以共用同一个Queue实例。常用方法:

Queue.qsize():返回queue的大小。

Queue.empty():判断队列是否为空,通常不太靠谱。

Queue.full():判断是否满了。

Queue.put(item, block=True, timeout=None): 往队列里放数据。

Queue.put_nowait(item):往队列里存放元素,不等待

Queue.get(item, block=True, timeout=None): 从队列里取数据。

Queue.get_nowait(item):从队列里取元素,不等待

Queue.task_done():表示队列中某个元素是否的使用情况,使用结束会发送信息。

Queue.join():一直阻塞直到队列中的所有元素都执行完毕。

三、使用threading+Queue处理多任务

假设有十个任务需要处理,打算在后台开启五个线程,简化后的模型

import Queue
import threading
import time

queue = Queue.Queue()

class ThreadNum(threading.Thread):
  def __init__(self, queue):
    threading.Thread.__init__(self)
    self.queue = queue

  def run(self):
    while True:
      #消费者端,从队列中获取num
      num = self.queue.get()
      print("Retrieved", num)
      time.sleep(1) 
      #在完成这项工作之后,使用 queue.task_done() 函数向任务已经完成的队列发送一个信号
      self.queue.task_done()

    print("Consumer Finished")

def main():
  #产生一个 threads pool, 并把消息传递给thread函数进行处理,这里开启10个并发
  for i in range(5):
    t = ThreadNum(queue)
    t.setDaemon(True)
    t.start()

  #往队列中填数据 
  for num in range(10):
    queue.put(num)
    #wait on the queue until everything has been processed

  queue.join()

if __name__ == '__main__':
  main()
  time.sleep(500)

输出为:

('Retrieved', 0)
 ('Retrieved', 1)('Retrieved', 2)
('Retrieved', 3)
('Retrieved', 4)
('Retrieved', 5)('Retrieved', 6)
('Retrieved', 7)
('Retrieved', 8)
 ('Retrieved', 9)

具体工作步骤描述如下:

1、创建一个 Queue.Queue() 的实例,然后使用数据对它进行填充。

2、将经过填充数据的实例传递给线程类,后者是通过继承 threading.Thread 的方式创建的。

3、生成守护线程池。

4、每次从队列中取出一个项目,并使用该线程中的数据和 run 方法以执行相应的工作。

5、在完成这项工作之后,使用 queue.task_done() 函数向任务已经完成的队列发送一个信号。

6、对队列执行 join 操作,实际上意味着等到队列为空,再退出主程序。

在使用这个模式时需要注意一点:通过将守护线程设置为 true,程序运行完自动退出。好处是在退出之前,可以对队列执行 join 操作、或者等到队列为空。

注意运行main函数后继续执行time.sleep(500),可以观察到主线程未结束的情况下ThreadNum(queue)生成的线程还在运行。如果需要停止线程的话可以对以上代码加以修改。

import Queue
import threading
import time

queue = Queue.Queue()

class ThreadNum(threading.Thread):
  """没打印一个数字等待1秒,并发打印10个数字需要多少秒?"""
  def __init__(self, queue):
    threading.Thread.__init__(self)
    self.queue = queue

  def run(self):
    done = False
    while not done:
      #消费者端,从队列中获取num
      num = self.queue.get()
      if num is None:
        done = True
      else:
        print("Retrieved", num)
      time.sleep(1) 
      #在完成这项工作之后,使用 queue.task_done() 函数向任务已经完成的队列发送一个信号
      self.queue.task_done()

    print("Consumer Finished")
def main():
  #产生一个 threads pool, 并把消息传递给thread函数进行处理,这里开启10个并发
  for i in range(5):
    t = ThreadNum(queue)
    t.setDaemon(True)
    t.start()

  #往队列中填错数据 
  for num in range(10):
    queue.put(num)

  queue.join()
  time.sleep(100)
  for i in range(10):
    queue.put(None)
    print('None')
  time.sleep(200)

if __name__ == '__main__':
  start = time.time()
  main()
  print"Elapsed Time: %s" % (time.time() - start)

main函数执行完后队列向线程发送None消息,触发线程的停止标识,这样就可以动态管理线程池了。

以上这篇Python 使用threading+Queue实现线程池示例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持python博客。

展开全文
上一篇:python实现的分析并统计nginx日志数据功能示例
下一篇:Python CSV文件模块的使用案例分析
输入字:
相关知识
Python 实现图片色彩转换案例

我们在看动漫、影视作品中,当人物在回忆过程中,体现出来的画面一般都是黑白或者褐色的。本文将提供将图片色彩转为黑白或者褐色风格的案例详解,感兴趣的小伙伴可以了解一下。

python初学定义函数

这篇文章主要为大家介绍了python的定义函数,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助,希望能够给你带来帮助

图文详解Python如何导入自己编写的py文件

有时候自己写了一个py文件,想要把它导入到另一个py文件里面,所以下面这篇文章主要给大家介绍了关于Python如何导入自己编写的py文件的相关资料,需要的朋友可以参考下

python二分法查找实例代码

二分算法是一种效率比较高的查找算法,其输入的是一个有序的元素列表,如果查找元素包含在列表中,二分查找返回其位置,否则返回NONE,下面这篇文章主要给大家介绍了关于python二分法查找的相关资料,需要的朋友可以参考下