时间:2020-12-31 python教程 查看: 844
ZeroMQ是一个消息队列网络库,实现网络常用技术封装。在C/S中实现了三种模式,这段时间用python简单实现了一下,感觉python虽然灵活。但是数据处理不如C++自由灵活。
Request-Reply模式:
客户端在请求后,服务端必须回响应
server:
# -*-coding:utf-8 -*-
import zmq
context = zmq.Context()
socket = context.socket(zmq.REP)
socket.bind("tcp://*:5555")
while True:
message = socket.recv()
print (message)
socket.send("server response!".encode('utf-8'))
clinet:
# -*-coding:utf-8 -*-
import zmq
import sys
context = zmq.Context()
socket = context.socket(zmq.REQ)
socket.connect("tcp://localhost:5555")
while(True):
data = input("input your data:")
if data == 'q':
sys.exit()
print(data)
socket.send(data.encode('utf-8'))
response = socket.recv();
print (response)
Publish-Subscribe模式:
广播所有client,没有队列缓存,断开连接数据将永远丢失。client可以进行数据过滤。
server:
# -*-coding:utf-8 -*-
import zmq
context = zmq.Context()
socket = context.socket(zmq.PUB)
socket.bind("tcp://127.0.0.1:5000")
while True:
data = input('input your data:')
socket.send(data.encode('utf-8'))
clinet:
# -*-coding:utf-8 -*-
import time
import zmq
context = zmq.Context()
socket = context.socket(zmq.SUB)
socket.connect("tcp://127.0.0.1:5000")
socket.setsockopt(zmq.SUBSCRIBE, ''.encode('utf-8'))
while True:
print(socket.recv())
Parallel Pipeline模式:
由三部分组成,push进行数据推送,work进行数据缓存,pull进行数据竞争获取处理。区别于Publish-Subscribe存在一个数据缓存和处理负载。
当连接被断开,数据不会丢失,重连后数据继续发送到对端
server:
# -*-coding:utf-8 -*-
import zmq
context = zmq.Context()
recive = context.socket(zmq.PULL)
recive.connect('tcp://127.0.0.1:5558')
while True:
data = recive.recv()
print(data)
work:
# -*-coding:utf-8 -*-
import zmq
context = zmq.Context()
recive = context.socket(zmq.PULL)
recive.connect('tcp://127.0.0.1:5557')
sender = context.socket(zmq.PUSH)
sender.connect('tcp://127.0.0.1:5558')
while True:
data = recive.recv()
print(data)
sender.send(data)
clinet:
# -*-coding:utf-8 -*-
import zmq
import time
context = zmq.Context()
socket = context.socket(zmq.PUSH)
socket.bind('tcp://*:5557')
while True:
data = input('input your data:')
print(data)
socket.send(data.encode('utf-8'))
以上这篇关于ZeroMQ 三种模式python3实现方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持python博客。