首页 > python教程

opencv resize图片为正方形尺寸的实现方法

时间:2020-12-27 python教程 查看: 1019

在深度学习中,模型的输入size通常是正方形尺寸的,比如300 x 300这样.直接resize的话,会把图像拉的变形.通常我们希望resize以后仍然保持图片的宽高比.

例如:

如果直接resize到的话:

而我们希望得到:

可以利用copyMakeBorder和resize配合达到我们的目的.

import cv2
def resize_keep_aspectratio(image_src,dst_size):
  src_h,src_w = image_src.shape[:2]
  print(src_h,src_w)
  dst_h,dst_w = dst_size 

  #判断应该按哪个边做等比缩放
  h = dst_w * (float(src_h)/src_w)#按照w做等比缩放
  w = dst_h * (float(src_w)/src_h)#按照h做等比缩放

  h = int(h)
  w = int(w)

  if h <= dst_h:
    image_dst = cv2.resize(image_src,(dst_w,int(h)))
  else:
    image_dst = cv2.resize(image_src,(int(w),dst_h))

  h_,w_ = image_dst.shape[:2]
  print(h_,w_)

  top = int((dst_h - h_) / 2);
  down = int((dst_h - h_+1) / 2);
  left = int((dst_w - w_) / 2);
  right = int((dst_w - w_+1) / 2);

  value = [0,0,0]
  borderType = cv2.BORDER_CONSTANT
  print(top, down, left, right)
  image_dst = cv2.copyMakeBorder(image_dst, top, down, left, right, borderType, None, value)

  return image_dst

image_src = cv2.imread("/home/sc/disk/data/bdd-data/bdd_data/bdd100k/images/10k/train/0a0a0b1a-7c39d841.jpg")
dst_size = (720,720)

image = resize_keep_aspectratio(image_src,dst_size)
cv2.imshow("aaa",image)
print(image.shape)
if 27 == cv2.waitKey():
  cv2.destroyAllWindows()

首先判断应该用w,h哪个方向的长度做等比缩放,缩放到合适的尺寸后,在用copyMakeBorder对剩余像素进行填充.深度学习中通常用灰度值128进行边界的填充.以文章开头的图片为例,处理后得到的图片:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持python博客。

展开全文
上一篇:python dataframe NaN处理方式
下一篇:Python的对象传递与Copy函数使用详解
输入字:
相关知识
Python 实现图片色彩转换案例

我们在看动漫、影视作品中,当人物在回忆过程中,体现出来的画面一般都是黑白或者褐色的。本文将提供将图片色彩转为黑白或者褐色风格的案例详解,感兴趣的小伙伴可以了解一下。

python初学定义函数

这篇文章主要为大家介绍了python的定义函数,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助,希望能够给你带来帮助

图文详解Python如何导入自己编写的py文件

有时候自己写了一个py文件,想要把它导入到另一个py文件里面,所以下面这篇文章主要给大家介绍了关于Python如何导入自己编写的py文件的相关资料,需要的朋友可以参考下

python二分法查找实例代码

二分算法是一种效率比较高的查找算法,其输入的是一个有序的元素列表,如果查找元素包含在列表中,二分查找返回其位置,否则返回NONE,下面这篇文章主要给大家介绍了关于python二分法查找的相关资料,需要的朋友可以参考下