首页 > python教程

Pytorch Tensor基本数学运算详解

时间:2020-12-24 python教程 查看: 904

1. 加法运算

示例代码:

import torch

# 这两个Tensor加减乘除会对b自动进行Broadcasting
a = torch.rand(3, 4)
b = torch.rand(4)

c1 = a + b
c2 = torch.add(a, b)
print(c1.shape, c2.shape)
print(torch.all(torch.eq(c1, c2)))

输出结果:

torch.Size([3, 4]) torch.Size([3, 4])
tensor(1, dtype=torch.uint8)

2. 减法运算

示例代码:

a = torch.rand(3, 4)
b = torch.rand(4)

c1 = a - b
c2 = torch.sub(a, b)
print(c1.shape, c2.shape)
print(torch.all(torch.eq(c1, c2)))```

<p>输出结果:</p>

```python  
torch.Size([3, 4]) torch.Size([3, 4])
tensor(1, dtype=torch.uint8)

3. 哈达玛积(element wise,对应元素相乘)

示例代码:

c1 = a * b
c2 = torch.mul(a, b)
print(c1.shape, c2.shape)
print(torch.all(torch.eq(c1, c2)))```

<p>输出结果:</p>

```python  
torch.Size([3, 4]) torch.Size([3, 4])
tensor(1, dtype=torch.uint8)

4. 除法运算

示例代码:

c1 = a / b
c2 = torch.div(a, b)
print(c1.shape, c2.shape)
print(torch.all(torch.eq(c1, c2)))

输出结果:

torch.Size([3, 4]) torch.Size([3, 4])
tensor(1, dtype=torch.uint8)

5. 矩阵乘法

(1)二维矩阵相乘

二维矩阵乘法运算操作包括torch.mm()、torch.matmul()、@,

示例代码:

import torch

a = torch.ones(2, 1)
b = torch.ones(1, 2)
print(torch.mm(a, b).shape)
print(torch.matmul(a, b).shape)
print((a @ b).shape)

输出结果:

torch.Size([2, 2])
torch.Size([2, 2])
torch.Size([2, 2])

(2)多维矩阵相乘

对于高维的Tensor(dim>2),定义其矩阵乘法仅在最后的两个维度上,要求前面的维度必须保持一致,就像矩阵的索引一样并且运算操只有torch.matmul()。

示例代码:

c = torch.rand(4, 3, 28, 64)
d = torch.rand(4, 3, 64, 32)
print(torch.matmul(c, d).shape)

输出结果:

torch.Size([4, 3, 28, 32])

注意,在这种情形下的矩阵相乘,前面的"矩阵索引维度"如果符合Broadcasting机制,也会自动做广播,然后相乘。

示例代码:

c = torch.rand(4, 3, 28, 64)
d = torch.rand(4, 1, 64, 32)
print(torch.matmul(c, d).shape)

输出结果:

torch.Size([4, 3, 28, 32])

6. 幂运算

示例代码:

import torch

a = torch.full([2, 2], 3)

b = a.pow(2) # 也可以a**2
print(b)

输出结果:

tensor([[9., 9.],
    [9., 9.]])

7. 开方运算

示例代码:

c = b.sqrt() # 也可以a**(0.5)
print(c)

d = b.rsqrt() # 平方根的倒数
print(d)

输出结果:

tensor([[3., 3.],
    [3., 3.]])
tensor([[0.3333, 0.3333],
    [0.3333, 0.3333]])

8.指数与对数运算

注意log是以自然对数为底数的,以2为底的用log2,以10为底的用log10

示例代码:

import torch

a = torch.exp(torch.ones(2, 2)) # 得到2*2的全是e的Tensor
print(a)
print(torch.log(a)) # 取自然对数

输出结果:

tensor([[2.7183, 2.7183],
    [2.7183, 2.7183]])
tensor([[1., 1.],
    [1., 1.]])

9.近似值运算

示例代码:

import torch

a = torch.tensor(3.14)
print(a.floor(), a.ceil(), a.trunc(), a.frac()) # 取下,取上,取整数,取小数
b = torch.tensor(3.49)
c = torch.tensor(3.5)
print(b.round(), c.round()) # 四舍五入

输出结果:

tensor(3.) tensor(4.) tensor(3.) tensor(0.1400)
tensor(3.) tensor(4.)

10. 裁剪运算

即对Tensor中的元素进行范围过滤,不符合条件的可以把它变换到范围内部(边界)上,常用于梯度裁剪(gradient clipping),即在发生梯度离散或者梯度爆炸时对梯度的处理,实际使用时可以查看梯度的(L2范数)模来看看需不需要做处理:w.grad.norm(2)。

示例代码:

import torch

grad = torch.rand(2, 3) * 15 # 0~15随机生成
print(grad.max(), grad.min(), grad.median()) # 最大值最小值平均值

print(grad)
print(grad.clamp(10)) # 最小是10,小于10的都变成10
print(grad.clamp(3, 10)) # 最小是3,小于3的都变成3;最大是10,大于10的都变成10

输出结果:

tensor(14.7400) tensor(1.8522) tensor(10.5734)
tensor([[ 1.8522, 14.7400, 8.2445],
    [13.5520, 10.5734, 12.9756]])
tensor([[10.0000, 14.7400, 10.0000],
    [13.5520, 10.5734, 12.9756]])
tensor([[ 3.0000, 10.0000, 8.2445],
    [10.0000, 10.0000, 10.0000]])

以上这篇Pytorch Tensor基本数学运算详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持python博客。

展开全文
上一篇:如何利用pygame实现简单的五子棋游戏
下一篇:python实现多进程按序号批量修改文件名的方法示例
输入字:
相关知识
Python 实现图片色彩转换案例

我们在看动漫、影视作品中,当人物在回忆过程中,体现出来的画面一般都是黑白或者褐色的。本文将提供将图片色彩转为黑白或者褐色风格的案例详解,感兴趣的小伙伴可以了解一下。

python初学定义函数

这篇文章主要为大家介绍了python的定义函数,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助,希望能够给你带来帮助

图文详解Python如何导入自己编写的py文件

有时候自己写了一个py文件,想要把它导入到另一个py文件里面,所以下面这篇文章主要给大家介绍了关于Python如何导入自己编写的py文件的相关资料,需要的朋友可以参考下

python二分法查找实例代码

二分算法是一种效率比较高的查找算法,其输入的是一个有序的元素列表,如果查找元素包含在列表中,二分查找返回其位置,否则返回NONE,下面这篇文章主要给大家介绍了关于python二分法查找的相关资料,需要的朋友可以参考下