首页 > python教程

Pytorch之Variable的用法

时间:2020-12-21 python教程 查看: 830

1.简介

torch.autograd.Variable是Autograd的核心类,它封装了Tensor,并整合了反向传播的相关实现

Variable和tensor的区别和联系

Variable是篮子,而tensor是鸡蛋,鸡蛋应该放在篮子里才能方便拿走(定义variable时一个参数就是tensor)

Variable这个篮子里除了装了tensor外还有requires_grad参数,表示是否需要对其求导,默认为False

Variable这个篮子呢,自身有一些属性

比如grad,梯度variable.grad是d(y)/d(variable)保存的是变量y对variable变量的梯度值,如果requires_grad参数为False,所以variable.grad返回值为None,如果为True,返回值就为对variable的梯度值

比如grad_fn,对于用户自己创建的变量(Variable())grad_fn是为none的,也就是不能调用backward函数,但对于由计算生成的变量,如果存在一个生成中间变量的requires_grad为true,那其的grad_fn不为none,反则为none

比如data,这个就很简单,这个属性就是装的鸡蛋(tensor)

Varibale包含三个属性:

data:存储了Tensor,是本体的数据 grad:保存了data的梯度,本事是个Variable而非Tensor,与data形状一致 grad_fn:指向Function对象,用于反向传播的梯度计算之用

代码1

import numpy as np
import torch
from torch.autograd import Variable

x = Variable(torch.ones(2,2),requires_grad = False)
temp = Variable(torch.zeros(2,2),requires_grad = True)

y = x + temp + 2
y = y.mean() #求平均数

y.backward() #反向传递函数,用于求y对前面的变量(x)的梯度
print(x.grad) # d(y)/d(x)

输出1

none

(因为requires_grad=False)

代码2

import numpy as np
import torch
from torch.autograd import Variable

x = Variable(torch.ones(2,2),requires_grad = False)
temp = Variable(torch.zeros(2,2),requires_grad = True)


y = x + temp + 2
y = y.mean() #求平均数

y.backward() #反向传递函数,用于求y对前面的变量(x)的梯度
print(temp.grad) # d(y)/d(temp)

输出2

tensor([[0.2500, 0.2500],
[0.2500, 0.2500]])

代码3

import numpy as np
import torch
from torch.autograd import Variable

x = Variable(torch.ones(2,2),requires_grad = False)
temp = Variable(torch.zeros(2,2),requires_grad = True)


y = x + 2
y = y.mean() #求平均数

y.backward() #反向传递函数,用于求y对前面的变量(x)的梯度
print(x.grad) # d(y)/d(x)

输出3

Traceback (most recent call last):
File "path", line 12, in
y.backward()

(报错了,因为生成变量y的中间变量只有x,而x的requires_grad是False,所以y的grad_fn是none)

代码4

import numpy as np
import torch
from torch.autograd import Variable

x = Variable(torch.ones(2,2),requires_grad = False)
temp = Variable(torch.zeros(2,2),requires_grad = True)


y = x + 2
y = y.mean() #求平均数

#y.backward() #反向传递函数,用于求y对前面的变量(x)的梯度
print(y.grad_fn) # d(y)/d(x)

输出4

none

2.grad属性

在每次backward后,grad值是会累加的,所以利用BP算法,每次迭代是需要将grad清零的。

x.grad.data.zero_()

(in-place操作需要加上_,即zero_)

以上这篇Pytorch之Variable的用法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持python博客。

展开全文
上一篇:Pytorch 多块GPU的使用详解
下一篇:Pytorch之contiguous的用法
输入字:
相关知识
Python 实现图片色彩转换案例

我们在看动漫、影视作品中,当人物在回忆过程中,体现出来的画面一般都是黑白或者褐色的。本文将提供将图片色彩转为黑白或者褐色风格的案例详解,感兴趣的小伙伴可以了解一下。

python初学定义函数

这篇文章主要为大家介绍了python的定义函数,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助,希望能够给你带来帮助

图文详解Python如何导入自己编写的py文件

有时候自己写了一个py文件,想要把它导入到另一个py文件里面,所以下面这篇文章主要给大家介绍了关于Python如何导入自己编写的py文件的相关资料,需要的朋友可以参考下

python二分法查找实例代码

二分算法是一种效率比较高的查找算法,其输入的是一个有序的元素列表,如果查找元素包含在列表中,二分查找返回其位置,否则返回NONE,下面这篇文章主要给大家介绍了关于python二分法查找的相关资料,需要的朋友可以参考下