首页 > python教程

pytorch之ImageFolder使用详解

时间:2020-12-15 python教程 查看: 984

pytorch之ImageFolder

torchvision已经预先实现了常用的Dataset,包括前面使用过的CIFAR-10,以及ImageNet、COCO、MNIST、LSUN等数据集,可通过诸如torchvision.datasets.CIFAR10来调用。在这里介绍一个会经常使用到的Dataset——ImageFolder。

ImageFolder假设所有的文件按文件夹保存,每个文件夹下存储同一个类别的图片,文件夹名为类名,其构造函数如下:

ImageFolder(root, transform=None, target_transform=None, loader=default_loader)

它主要有四个参数:

root:在root指定的路径下寻找图片

transform:对PIL Image进行的转换操作,transform的输入是使用loader读取图片的返回对象

target_transform:对label的转换

loader:给定路径后如何读取图片,默认读取为RGB格式的PIL Image对象

label是按照文件夹名顺序排序后存成字典,即{类名:类序号(从0开始)},一般来说最好直接将文件夹命名为从0开始的数字,这样会和ImageFolder实际的label一致,如果不是这种命名规范,建议看看self.class_to_idx属性以了解label和文件夹名的映射关系。

图片结构如下所示:

from torchvision import transforms as T
import matplotlib.pyplot as plt
from torchvision.datasets import ImageFolder


dataset = ImageFolder('data/dogcat_2/')

# cat文件夹的图片对应label 0,dog对应1
print(dataset.class_to_idx)

# 所有图片的路径和对应的label
print(dataset.imgs)

# 没有任何的transform,所以返回的还是PIL Image对象
#print(dataset[0][1])# 第一维是第几张图,第二维为1返回label
#print(dataset[0][0]) # 为0返回图片数据
plt.imshow(dataset[0][0])
plt.axis('off')
plt.show()

加上transform

normalize = T.Normalize(mean=[0.4, 0.4, 0.4], std=[0.2, 0.2, 0.2])
transform = T.Compose([
     T.RandomResizedCrop(224),
     T.RandomHorizontalFlip(),
     T.ToTensor(),
     normalize,
])
dataset = ImageFolder('data1/dogcat_2/', transform=transform)

# 深度学习中图片数据一般保存成CxHxW,即通道数x图片高x图片宽
#print(dataset[0][0].size())

to_img = T.ToPILImage()
# 0.2和0.4是标准差和均值的近似
a=to_img(dataset[0][0]*0.2+0.4)
plt.imshow(a)
plt.axis('off')
plt.show()

以上这篇pytorch之ImageFolder使用详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持python博客。

展开全文
上一篇:pytorch之添加BN的实现
下一篇:Python装饰器原理与基本用法分析
输入字:
相关知识
Python 实现图片色彩转换案例

我们在看动漫、影视作品中,当人物在回忆过程中,体现出来的画面一般都是黑白或者褐色的。本文将提供将图片色彩转为黑白或者褐色风格的案例详解,感兴趣的小伙伴可以了解一下。

python初学定义函数

这篇文章主要为大家介绍了python的定义函数,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助,希望能够给你带来帮助

图文详解Python如何导入自己编写的py文件

有时候自己写了一个py文件,想要把它导入到另一个py文件里面,所以下面这篇文章主要给大家介绍了关于Python如何导入自己编写的py文件的相关资料,需要的朋友可以参考下

python二分法查找实例代码

二分算法是一种效率比较高的查找算法,其输入的是一个有序的元素列表,如果查找元素包含在列表中,二分查找返回其位置,否则返回NONE,下面这篇文章主要给大家介绍了关于python二分法查找的相关资料,需要的朋友可以参考下