首页 > python教程

基于Python的身份证验证识别和数据处理详解

时间:2020-11-23 python教程 查看: 1089

根据GB11643-1999公民身份证号码是特征组合码,由十七位数字本体码和一位数字校验码组成,排列顺序从左至右依次为:

六位数字地址码八位数字出生日期码三位数字顺序码一位数字校验码(数字10用罗马X表示)

校验系统:

校验码采用ISO7064:1983,MOD11-2校验码系统(图为校验规则样例)

用身份证号的前17位的每一位号码字符值分别乘上对应的加权因子值,得到的结果求和后对11进行取余,最后的结果放到表2检验码字符值..换算关系表中得出最后的一位身份证号码

代码:

# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#  http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert BERT checkpoint."""


import argparse

import torch

from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert
from transformers.utils import logging


logging.set_verbosity_info()


def convert_tf_checkpoint_to_pytorch(tf_checkpoint_path, bert_config_file, pytorch_dump_path):
 # Initialise PyTorch model
 config = BertConfig.from_json_file(bert_config_file)
 print("Building PyTorch model from configuration: {}".format(str(config)))
 model = BertForPreTraining(config)

 # Load weights from tf checkpoint
 load_tf_weights_in_bert(model, config, tf_checkpoint_path)

 # Save pytorch-model
 print("Save PyTorch model to {}".format(pytorch_dump_path))
 torch.save(model.state_dict(), pytorch_dump_path)


if __name__ == "__main__":
 parser = argparse.ArgumentParser()
 # Required parameters
 parser.add_argument(
  "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
 )
 parser.add_argument(
  "--bert_config_file",
  default=None,
  type=str,
  required=True,
  help="The config json file corresponding to the pre-trained BERT model. \n"
  "This specifies the model architecture.",
 )
 parser.add_argument(
  "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
 )
 args = parser.parse_args()
 convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)

到此这篇关于基于Python的身份证验证识别和数据处理详解的文章就介绍到这了,更多相关python 身份验证识别内容请搜索python博客以前的文章或继续浏览下面的相关文章希望大家以后多多支持python博客!

展开全文
上一篇:Python高并发和多线程有什么关系
下一篇:Ubuntu权限不足无法创建文件夹解决方案
输入字:
相关知识
Python 实现图片色彩转换案例

我们在看动漫、影视作品中,当人物在回忆过程中,体现出来的画面一般都是黑白或者褐色的。本文将提供将图片色彩转为黑白或者褐色风格的案例详解,感兴趣的小伙伴可以了解一下。

python初学定义函数

这篇文章主要为大家介绍了python的定义函数,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助,希望能够给你带来帮助

图文详解Python如何导入自己编写的py文件

有时候自己写了一个py文件,想要把它导入到另一个py文件里面,所以下面这篇文章主要给大家介绍了关于Python如何导入自己编写的py文件的相关资料,需要的朋友可以参考下

python二分法查找实例代码

二分算法是一种效率比较高的查找算法,其输入的是一个有序的元素列表,如果查找元素包含在列表中,二分查找返回其位置,否则返回NONE,下面这篇文章主要给大家介绍了关于python二分法查找的相关资料,需要的朋友可以参考下