首页 > python教程

Tensorflow Summary用法学习笔记

时间:2020-11-17 python教程 查看: 797

最近在研究tensorflow自带的例程speech_command,顺便学习tensorflow的一些基本用法。

其中tensorboard 作为一款可视化神器,可以说是学习tensorflow时模型训练以及参数可视化的法宝。

而在训练过程中,主要用到了tf.summary()的各类方法,能够保存训练过程以及参数分布图并在tensorboard显示。

tf.summary有诸多函数:

1、tf.summary.scalar

用来显示标量信息,其格式为:

tf.summary.scalar(tags, values, collections=None, name=None)

例如:tf.summary.scalar('mean', mean)

一般在画loss,accuary时会用到这个函数。

2、tf.summary.histogram

用来显示直方图信息,其格式为:

tf.summary.histogram(tags, values, collections=None, name=None) 

例如: tf.summary.histogram('histogram', var)
一般用来显示训练过程中变量的分布情况

3、tf.summary.distribution
分布图,一般用于显示weights分布

4、tf.summary.text
可以将文本类型的数据转换为tensor写入summary中:

例如:

text = """/a/b/c\\_d/f\\_g\\_h\\_2017"""
summary_op0 = tf.summary.text('text', tf.convert_to_tensor(text))

5、tf.summary.image

输出带图像的probuf,汇总数据的图像的的形式如下: ' tag /image/0', ' tag /image/1'...,如:input/image/0等。

格式:tf.summary.image(tag, tensor, max_images=3, collections=None, name=Non

6、tf.summary.audio

展示训练过程中记录的音频

7、tf.summary.merge_all

merge_all 可以将所有summary全部保存到磁盘,以便tensorboard显示。如果没有特殊要求,一般用这一句就可一显示训练时的各种信息了。

格式:tf.summaries.merge_all(key='summaries')

8、tf.summary.FileWriter

指定一个文件用来保存图。

格式:tf.summary.FileWritter(path,sess.graph)

可以调用其add_summary()方法将训练过程数据保存在filewriter指定的文件中

Tensorflow Summary 用法示例:

tf.summary.scalar('accuracy',acc)          #生成准确率标量图 
merge_summary = tf.summary.merge_all() 
train_writer = tf.summary.FileWriter(dir,sess.graph)#定义一个写入summary的目标文件,dir为写入文件地址 
......(交叉熵、优化器等定义) 
for step in xrange(training_step):         #训练循环 
  train_summary = sess.run(merge_summary,feed_dict = {...})#调用sess.run运行图,生成一步的训练过程数据 
  train_writer.add_summary(train_summary,step)#调用train_writer的add_summary方法将训练过程以及训练步数保存

此时开启tensorborad:

tensorboard --logdir=/summary_dir 

便能看见accuracy曲线了。

另外,如果我不想保存所有定义的summary信息,也可以用tf.summary.merge方法有选择性地保存信息:

9、tf.summary.merge

格式:tf.summary.merge(inputs, collections=None, name=None)

一般选择要保存的信息还需要用到tf.get_collection()函数

示例:

tf.summary.scalar('accuracy',acc)          #生成准确率标量图 
merge_summary = tf.summary.merge([tf.get_collection(tf.GraphKeys.SUMMARIES,'accuracy'),...(其他要显示的信息)]) 
train_writer = tf.summary.FileWriter(dir,sess.graph)#定义一个写入summary的目标文件,dir为写入文件地址 
......(交叉熵、优化器等定义) 
for step in xrange(training_step):         #训练循环 
  train_summary = sess.run(merge_summary,feed_dict = {...})#调用sess.run运行图,生成一步的训练过程数据 
  train_writer.add_summary(train_summary,step)#调用train_writer的add_summary方法将训练过程以及训练步数保存

使用tf.get_collection函数筛选图中summary信息中的accuracy信息,这里的

tf.GraphKeys.SUMMARIES  是summary在collection中的标志。

当然,也可以直接:

acc_summary = tf.summary.scalar('accuracy',acc)          #生成准确率标量图 
merge_summary = tf.summary.merge([acc_summary ,...(其他要显示的信息)]) #这里的[]不可省

如果要在tensorboard中画多个数据图,需定义多个tf.summary.FileWriter并重复上述过程。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持python博客。

展开全文
上一篇:TENSORFLOW变量作用域(VARIABLE SCOPE)
下一篇:pytorch 利用lstm做mnist手写数字识别分类的实例
输入字:
相关知识
Python 实现图片色彩转换案例

我们在看动漫、影视作品中,当人物在回忆过程中,体现出来的画面一般都是黑白或者褐色的。本文将提供将图片色彩转为黑白或者褐色风格的案例详解,感兴趣的小伙伴可以了解一下。

python初学定义函数

这篇文章主要为大家介绍了python的定义函数,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助,希望能够给你带来帮助

图文详解Python如何导入自己编写的py文件

有时候自己写了一个py文件,想要把它导入到另一个py文件里面,所以下面这篇文章主要给大家介绍了关于Python如何导入自己编写的py文件的相关资料,需要的朋友可以参考下

python二分法查找实例代码

二分算法是一种效率比较高的查找算法,其输入的是一个有序的元素列表,如果查找元素包含在列表中,二分查找返回其位置,否则返回NONE,下面这篇文章主要给大家介绍了关于python二分法查找的相关资料,需要的朋友可以参考下