首页 > python教程

Pytorch保存模型用于测试和用于继续训练的区别详解

时间:2020-11-14 python教程 查看: 1132

保存模型

保存模型仅仅是为了测试的时候,只需要

torch.save(model.state_dict, path)

path 为保存的路径

但是有时候模型及数据太多,难以一次性训练完的时候,而且用的还是 Adam优化器的时候, 一定要保存好训练的优化器参数以及epoch

state = { 'model': model.state_dict(), 'optimizer':optimizer.state_dict(), 'epoch': epoch }  
torch.save(state, path)

因为这里

def adjust_learning_rate(optimizer, epoch):
  lr_t = lr
  lr_t = lr_t * (0.3 ** (epoch // 2))
  for param_group in optimizer.param_groups:
    param_group['lr'] = lr_t

学习率是根据epoch变化的, 如果不保存epoch的话,基本上每次都从epoch为0开始训练,这样学习率就相当于不变了!!

恢复模型

恢复模型只用于测试的时候,

model.load_state_dict(torch.load(path))

path为之前存储模型时的路径

但是如果是用于继续训练的话,

checkpoint = torch.load(path)
model.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
start_epoch = checkpoint['epoch']+1

依次恢复出模型 优化器参数以及epoch

以上这篇Pytorch保存模型用于测试和用于继续训练的区别详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持python博客。

展开全文
上一篇:Ubuntu16.04安装python3.6.5步骤详解
下一篇:python实现实时视频流播放代码实例
输入字:
相关知识
Python 实现图片色彩转换案例

我们在看动漫、影视作品中,当人物在回忆过程中,体现出来的画面一般都是黑白或者褐色的。本文将提供将图片色彩转为黑白或者褐色风格的案例详解,感兴趣的小伙伴可以了解一下。

python初学定义函数

这篇文章主要为大家介绍了python的定义函数,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助,希望能够给你带来帮助

图文详解Python如何导入自己编写的py文件

有时候自己写了一个py文件,想要把它导入到另一个py文件里面,所以下面这篇文章主要给大家介绍了关于Python如何导入自己编写的py文件的相关资料,需要的朋友可以参考下

python二分法查找实例代码

二分算法是一种效率比较高的查找算法,其输入的是一个有序的元素列表,如果查找元素包含在列表中,二分查找返回其位置,否则返回NONE,下面这篇文章主要给大家介绍了关于python二分法查找的相关资料,需要的朋友可以参考下