首页 > python教程

关于pytorch中全连接神经网络搭建两种模式详解

时间:2020-11-10 python教程 查看: 877

pytorch搭建神经网络是很简单明了的,这里介绍两种自己常用的搭建模式:

import torch
import torch.nn as nn

first:

class NN(nn.Module):
 def __init__(self):
  super(NN,self).__init__()
  self.model=nn.Sequential(
   nn.Linear(30,40),
   nn.ReLU(),
   nn.Linear(40,60),
   nn.Tanh(),
   nn.Linear(60,10),
   nn.Softmax()
  )
  self.model[0].weight.data.uniform_(-3e-3, 3e-3)
  self.model[0].bias.data.uniform(-1,1)
 def forward(self,states):
  return self.model(states)

这一种是将整个网络写在一个Sequential中,网络参数设置可以在网络搭建好后单独设置:self.model[0].weight.data.uniform_(-3e-3,3e-3),这是设置第一个linear的权重是(-3e-3,3e-3)之间的均匀分布,bias是-1至1之间的均匀分布。

second:

class NN1(nn.Module):
 def __init__(self):
  super(NN1,self).__init__()
  self.Linear1=nn.Linear(30,40)
  self.Linear1.weight.data.fill_(-0.1)
  #self.Linear1.weight.data.uniform_(-3e-3,3e-3)
  self.Linear1.bias.data.fill_(-0.1)
  self.layer1=nn.Sequential(self.Linear1,nn.ReLU())

  self.Linear2=nn.Linear(40,60)
  self.layer2=nn.Sequential(self.Linear2,nn.Tanh())

  self.Linear3=nn.Linear(60,10)
  self.layer3=nn.Sequential(self.Linear3,nn.Softmax())


 def forward(self,states):
  return self.model(states)

网络参数的设置可以在定义完线性层之后直接设置如这里对于第一个线性层是这样设置:self.Linear1.weight.data.fill_(-0.1),self.Linear1.bias.data.fill_(-0.1)。

你可以看一下这样定义完的参数的效果:

Net=NN()
print("0:",Net.model[0])
print("weight:",type(Net.model[0].weight))
print("weight:",type(Net.model[0].weight.data))
print("bias",Net.model[0].bias.data)
print('1:',Net.model[1])
#print("weight:",Net.model[1].weight.data)
print('2:',Net.model[2])
print('3:',Net.model[3])
#print(Net.model[-1])

Net1=NN1()
print(Net1.Linear1.weight.data)

输出:

0: Linear (30 -> 40)
weight: <class 'torch.nn.parameter.Parameter'>
weight: <class 'torch.FloatTensor'>
bias 
-0.6287
-0.6573
-0.0452
 0.9594
-0.7477
 0.1363
-0.1594
-0.1586
 0.0360
 0.7375
 0.2501
-0.1371
 0.8359
-0.9684
-0.3886
 0.7200
-0.3906
 0.4911
 0.8081
-0.5449
 0.9872
 0.2004
 0.0969
-0.9712
 0.0873
 0.4562
-0.4857
-0.6013
 0.1651
 0.3315
-0.7033
-0.7440
 0.6487
 0.9802
-0.5977
 0.3245
 0.7563
 0.5596
 0.2303
-0.3836
[torch.FloatTensor of size 40]

1: ReLU ()
2: Linear (40 -> 60)
3: Tanh ()

-0.1000 -0.1000 -0.1000 ... -0.1000 -0.1000 -0.1000
-0.1000 -0.1000 -0.1000 ... -0.1000 -0.1000 -0.1000
-0.1000 -0.1000 -0.1000 ... -0.1000 -0.1000 -0.1000
   ...    ⋱    ...   
-0.1000 -0.1000 -0.1000 ... -0.1000 -0.1000 -0.1000
-0.1000 -0.1000 -0.1000 ... -0.1000 -0.1000 -0.1000
-0.1000 -0.1000 -0.1000 ... -0.1000 -0.1000 -0.1000
[torch.FloatTensor of size 40x30]


Process finished with exit code 0

这里要注意self.Linear1.weight的类型是网络的parameter。而self.Linear1.weight.data是FloatTensor。

以上这篇关于pytorch中全连接神经网络搭建两种模式详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持python博客。

展开全文
上一篇:使用Pytorch来拟合函数方式
下一篇:基于python监控程序是否关闭
输入字:
相关知识
Python 实现图片色彩转换案例

我们在看动漫、影视作品中,当人物在回忆过程中,体现出来的画面一般都是黑白或者褐色的。本文将提供将图片色彩转为黑白或者褐色风格的案例详解,感兴趣的小伙伴可以了解一下。

python初学定义函数

这篇文章主要为大家介绍了python的定义函数,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助,希望能够给你带来帮助

图文详解Python如何导入自己编写的py文件

有时候自己写了一个py文件,想要把它导入到另一个py文件里面,所以下面这篇文章主要给大家介绍了关于Python如何导入自己编写的py文件的相关资料,需要的朋友可以参考下

python二分法查找实例代码

二分算法是一种效率比较高的查找算法,其输入的是一个有序的元素列表,如果查找元素包含在列表中,二分查找返回其位置,否则返回NONE,下面这篇文章主要给大家介绍了关于python二分法查找的相关资料,需要的朋友可以参考下