首页 > python教程

Pytorch之finetune使用详解

时间:2020-11-03 python教程 查看: 1247

finetune分为全局finetune和局部finetune。首先介绍一下局部finetune步骤:

1.固定参数

  for name, child in model.named_children():
    for param in child.parameters():
      param.requires_grad = False

后,只传入 需要反传的参数,否则会报错

filter(lambda param: param.requires_grad, model.parameters())

2.调低学习率,加快衰减

finetune是在预训练模型上进行微调,学习速率不能太大。

目前不清楚:学习速率降低的幅度可以更快一些。这样以来,在使用step的策略时,stepsize可以更小一些。

直接从原始数据训练的base_lr一般为0.01,微调要比0.01小,置为0.001

要比直接训练的小一些,直接训练的stepsize为100000,finetune的stepsize: 50000

3. 固定bn或取消dropout:

batchnorm会影响训练的效果,随着每个batch,追踪样本的均值和方差。对于固定的网络,bn应该使用全局的数值

def freeze_bn(self):
  for layer in self.modules():
    if isinstance(layer, nn.BatchNorm2d):
      layer.eval()

训练时,model.train()会修改模式,freeze_zn()应该在这里后面

4.过滤参数

训练时,对于优化器,应该只传入需要改变的参数,否则会报错

filter(lambda p: p.requires_grad, model.parameters())

以上这篇Pytorch之finetune使用详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持python博客。

展开全文
上一篇:pytorch 修改预训练model实例
下一篇:浅谈Python3实现两个矩形的交并比(IoU)
输入字:
相关知识
Python 实现图片色彩转换案例

我们在看动漫、影视作品中,当人物在回忆过程中,体现出来的画面一般都是黑白或者褐色的。本文将提供将图片色彩转为黑白或者褐色风格的案例详解,感兴趣的小伙伴可以了解一下。

python初学定义函数

这篇文章主要为大家介绍了python的定义函数,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助,希望能够给你带来帮助

图文详解Python如何导入自己编写的py文件

有时候自己写了一个py文件,想要把它导入到另一个py文件里面,所以下面这篇文章主要给大家介绍了关于Python如何导入自己编写的py文件的相关资料,需要的朋友可以参考下

python二分法查找实例代码

二分算法是一种效率比较高的查找算法,其输入的是一个有序的元素列表,如果查找元素包含在列表中,二分查找返回其位置,否则返回NONE,下面这篇文章主要给大家介绍了关于python二分法查找的相关资料,需要的朋友可以参考下