首页 > python教程

浅谈Tensorflow 动态双向RNN的输出问题

时间:2020-10-28 python教程 查看: 756

tf.nn.bidirectional_dynamic_rnn()

函数:

def bidirectional_dynamic_rnn(
  cell_fw, # 前向RNN
  cell_bw, # 后向RNN
  inputs, # 输入
  sequence_length=None,# 输入序列的实际长度(可选,默认为输入序列的最大长度)
  initial_state_fw=None, # 前向的初始化状态(可选)
  initial_state_bw=None, # 后向的初始化状态(可选)
  dtype=None, # 初始化和输出的数据类型(可选)
  parallel_iterations=None,
  swap_memory=False,
  time_major=False,
  # 决定了输入输出tensor的格式:如果为true, 向量的形状必须为 `[max_time, batch_size, depth]`.
  # 如果为false, tensor的形状必须为`[batch_size, max_time, depth]`.
  scope=None
)

其中,

outputs为(output_fw, output_bw),是一个包含前向cell输出tensor和后向cell输出tensor组成的元组。假设

time_major=false,tensor的shape为[batch_size, max_time, depth]。实验中使用tf.concat(outputs, 2)将其拼接。

output_states为(output_state_fw, output_state_bw),包含了前向和后向最后的隐藏状态的组成的元组。

output_state_fw和output_state_bw的类型为LSTMStateTuple。

LSTMStateTuple由(c,h)组成,分别代表memory cell和hidden state。

返回值:

元组:(outputs, output_states)

这里还有最后的一个小问题,output_states是一个元组的元组,处理方法是用c_fw,h_fw = output_state_fw和c_bw,h_bw = output_state_bw,最后再分别将c和h状态concat起来,用tf.contrib.rnn.LSTMStateTuple()函数生成decoder端的初始状态

def encoding_layer(rnn_size,sequence_length,num_layers,rnn_inputs,keep_prob):
  # rnn_size: rnn隐层节点数量
  # sequence_length: 数据的序列长度
  # num_layers:堆叠的rnn cell数量
  # rnn_inputs: 输入tensor
  # keep_prob:
  '''Create the encoding layer'''
  for layer in range(num_layers):
    with tf.variable_scope('encode_{}'.format(layer)):
      cell_fw = tf.contrib.rnn.LSTMCell(rnn_size,initializer=tf.random_uniform_initializer(-0.1,0.1,seed=2))
      cell_fw = tf.contrib.rnn.DropoutWrapper(cell_fw,input_keep_prob=keep_prob)

      cell_bw = tf.contrib.rnn.LSTMCell(rnn_size,initializer=tf.random_uniform_initializer(-0.1,0.1,seed=2))
      cell_bw = tf.contrib.rnn.DropoutWrapper(cell_bw,input_keep_prob = keep_prob)

      enc_output,enc_state = tf.nn.bidirectional_dynamic_rnn(cell_fw,cell_bw,
                                  rnn_inputs,sequence_length,dtype=tf.float32)

  # join outputs since we are using a bidirectional RNN
  enc_output = tf.concat(enc_output,2) 
  return enc_output,enc_state

tf.nn.dynamic_rnn()

tf.nn.dynamic_rnn的返回值有两个:outputs和state

为了描述输出的形状,先介绍几个变量,batch_size是输入的这批数据的数量,max_time就是这批数据中序列的最长长度,如果输入的三个句子,那max_time对应的就是最长句子的单词数量,cell.output_size其实就是rnn cell中神经元的个数。

例子来说明其用法,假设你的RNN的输入input是[2,20,128],其中2是batch_size,20是文本最大长度,128是embedding_size,可以看出,有两个example,我们假设第二个文本长度只有13,剩下的7个是使用0-padding方法填充的。dynamic返回的是两个参数:outputs,state,其中outputs是[2,20,128],也就是每一个迭代隐状态的输出,state是由(c,h)组成的tuple,均为[batch,128]。

outputs. outputs是一个tensor

如果time_major==True,outputs形状为 [max_time, batch_size, cell.output_size ](要求rnn输入与rnn输出形状保持一致)

如果time_major==False(默认),outputs形状为 [ batch_size, max_time, cell.output_size ]

state. state是一个tensor。state是最终的状态,也就是序列中最后一个cell输出的状态。一般情况下state的形状为 [batch_size, cell.output_size ],但当输入的cell为BasicLSTMCell时,state的形状为[2,batch_size, cell.output_size ],其中2也对应着LSTM中的cell state和hidden state。

这里有关于LSTM的结构问题:

以上这篇浅谈Tensorflow 动态双向RNN的输出问题就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持python博客。

展开全文
上一篇:tensorflow查看ckpt各节点名称实例
下一篇:使用 tf.nn.dynamic_rnn 展开时间维度方式
输入字:
相关知识
Python 实现图片色彩转换案例

我们在看动漫、影视作品中,当人物在回忆过程中,体现出来的画面一般都是黑白或者褐色的。本文将提供将图片色彩转为黑白或者褐色风格的案例详解,感兴趣的小伙伴可以了解一下。

python初学定义函数

这篇文章主要为大家介绍了python的定义函数,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助,希望能够给你带来帮助

图文详解Python如何导入自己编写的py文件

有时候自己写了一个py文件,想要把它导入到另一个py文件里面,所以下面这篇文章主要给大家介绍了关于Python如何导入自己编写的py文件的相关资料,需要的朋友可以参考下

python二分法查找实例代码

二分算法是一种效率比较高的查找算法,其输入的是一个有序的元素列表,如果查找元素包含在列表中,二分查找返回其位置,否则返回NONE,下面这篇文章主要给大家介绍了关于python二分法查找的相关资料,需要的朋友可以参考下