首页 > python教程

keras 特征图可视化实例(中间层)

时间:2020-10-25 python教程 查看: 924

鉴于最近一段时间一直在折腾的CNN网络效果不太理想,主要目标是为了检测出图像中的一些关键点,可以参考人脸的关键点检测算法。

但是由于从数据集的制作是自己完成的,所以数据集质量可能有待商榷,训练效果不好的原因可能也是因为数据集没有制作好(标点实在是太累了)。

于是想看看自己做的数据集在进入到网络后那些中间的隐藏层到底发生了哪些变化。

今天主要是用已经训练好的mnist模型来提前测试一下,这里的mnist模型的准确度已经达到了98%左右。

使用的比较简单的一个模型:

def simple_cnn():
 input_data = Input(shape=(28, 28, 1))
 x = Conv2D(64, kernel_size=3, padding='same', activation='relu', name='conv1')(input_data)
 x = MaxPooling2D(pool_size=2, strides=2, name='maxpool1')(x)
 x = Conv2D(32, kernel_size=3, padding='same', activation='relu', name='conv2')(x)
 x = MaxPooling2D(pool_size=2, strides=2, name='maxpool2')(x)
 x = Dropout(0.25)(x)
 # 获得最后一层卷积层的输出
 # 添加自己的全连接
 x = Flatten(name='flatten')(x)
 x = Dense(128, activation='relu', name='fc1')(x)
 x = Dropout(0.25)(x)
 x = Dense(10, activation='softmax', name='fc2')(x)
 model = Model(inputs=input_data, outputs=x)

此模型已经训练好了,跑了10个epoch,验证集0.33

这里的效果还是很好的,┓( ´∀` )┏

下面在网上搞了张手写数字

使用网络进行预测,这里就先给出如何可视化第一层的卷积层的输出吧,哇哈哈

代码:

input_data = Input(shape=(28, 28, 1))
 x = Conv2D(64, kernel_size=3, padding='same', activation='relu', name='conv1')(input_data)
 x = MaxPooling2D(pool_size=2, strides=2, name='maxpool1')(x)
 x = Conv2D(32, kernel_size=3, padding='same', activation='relu', name='conv2')(x)
 x = MaxPooling2D(pool_size=2, strides=2, name='maxpool2')(x)
 x = Dropout(0.25)(x)
 x = Flatten(name='flatten')(x)
 x = Dense(128, activation='relu', name='fc1')(x)
 x = Dropout(0.25)(x)
 x = Dense(10, activation='softmax', name='fc2')(x)
 model = Model(inputs=input_data, outputs=x)

 model.load_weights('final_model_mnist_2019_1_28.h5')

 raw_img = cv2.imread('test.png')
 test_img = load_img('test.png', color_mode='grayscale', target_size=(28, 28))
 test_img = np.array(test_img)
 test_img = np.expand_dims(test_img, axis=0)
 test_img = np.expand_dims(test_img, axis=3)

 conv1_layer = Model(inputs=input_data, outputs=model.get_layer(index=1).output)

 conv1_output = conv1_layer.predict(test_img)

 for i in range(64):
  show_img = conv1_output[:, :, :, i]
  print(show_img.shape)
  show_img.shape = [28,28]
  cv2.imshow('img', show_img)
  cv2.waitKey(0)

核心方法就是通过加载模型后,新建Model,将输出部分换为你想要查看的网络层数即可,当然get_layer()包括了name和index两个参数。最后通过遍历当前卷积层的所有特征映射,将每一个都展示出来。就可以了。

以上这篇keras 特征图可视化实例(中间层)就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持python博客。

展开全文
上一篇:基于keras 模型、结构、权重保存的实现
下一篇:keras获得某一层或者某层权重的输出实例
输入字:
相关知识
Python 实现图片色彩转换案例

我们在看动漫、影视作品中,当人物在回忆过程中,体现出来的画面一般都是黑白或者褐色的。本文将提供将图片色彩转为黑白或者褐色风格的案例详解,感兴趣的小伙伴可以了解一下。

python初学定义函数

这篇文章主要为大家介绍了python的定义函数,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助,希望能够给你带来帮助

图文详解Python如何导入自己编写的py文件

有时候自己写了一个py文件,想要把它导入到另一个py文件里面,所以下面这篇文章主要给大家介绍了关于Python如何导入自己编写的py文件的相关资料,需要的朋友可以参考下

python二分法查找实例代码

二分算法是一种效率比较高的查找算法,其输入的是一个有序的元素列表,如果查找元素包含在列表中,二分查找返回其位置,否则返回NONE,下面这篇文章主要给大家介绍了关于python二分法查找的相关资料,需要的朋友可以参考下