时间:2020-10-20 python教程 查看: 674
1. 基本介绍
tensorflow设备内存管理模块实现了一个best-fit with coalescing算法(后文简称bfc算法)。
bfc算法是Doung Lea's malloc(dlmalloc)的一个非常简单的版本。
它具有内存分配、释放、碎片管理等基本功能。
2. bfc基本算法思想
1. 数据结构
整个内存空间由一个按基址升序排列的Chunk双向链表来表示,它们的直接前趋和后继必须在地址连续的内存空间。Chunk结构体里含有实际大小、请求大小、是否被占用、基址、直接前趋、直接后继、Bin索引等信息。
2. 申请
用户申请一个内存块(malloc)。根据chunk双链表找到一个合适的内存块,如果该内存块的大小是用户申请的大小的二倍以上,那么就将该内存块切分成两块,这就是split操作。
返回其中一块给用户,并将该内存块标识为占用
Spilt操作会新增一个chunk,所以需要修改chunk双链表以维持前驱和后继关系
如果用户申请512的空间,正好有一块1024的chunk2是空闲的,由于1024/512 =2,所以chunk2 被split为2块:chunk2_1和chunk2_2。返回chunk2_1给用户并将其标志位占用状态。
3. 释放
用户释放一个内存块(free)。先将该块标记为空闲。然后根据chunk数据结构中的信息找到其前驱和后继内存块。如果前驱和后继块中有空闲的块,那么将刚释放的块和空闲的块合并成一个更大的chunk(这就是merge操作,合并当前块和其前后的空闲块)。再修改双链表结构以维持前驱后继关系。这就做到了内存碎片的回收。
如果用户要free chunk3,由于chunk3的前驱chunk2也是空闲的,所以将chunk2和chunk3合并得到一个新的chunk2',大小为chunk2和chunk3之和。
3. bins
1. bins数据结构
bfc算法采取的是被动分块的策略。最开始整个内存是一个chunk,随着用户申请空间的次数增加,最开始的大chunk会被不断的split开来,从而产生越来越多的小chunk。当chunk数量很大时,为了寻找一个合适的内存块而遍历双链表无疑是一笔巨大的开销。为了实现对空闲块的高效管理,bfc算法设计了bin这个抽象数据结构。
每个bin都有一个size属性,一个bin是一个拥有chunk size >= binsize的空闲chunk的集合。集合中的chunk按照chunk size的升序组织成单链表。bfc算法维护了一个bin的集合:bins。它由多个bin以及从属于每个bin的chunks组成。内存中所有的空闲chunk都由bins管理。
图中每一列表示一个bin,列首方格中的数字表示bin的size。bin size的大小都是256的2^n的倍。每个bin下面挂载了一系列的空闲chunk,每个chunk的chunk size都大于等于所属的bin的bin size,按照chunk size的升序挂载成单链表。
2. bins操作
bfc算法针对bins这个集合设计了三个操作:search、insert、delete。
search
给定一个chunk size,从bins中找到大于等于该chunksize的最小的那个空闲chunk。Search操作具体流程如下。如果bin以数组的形式组织,那么可以从index = chunk size /256 >>2的那个bin开始查找。最好的情况是开始查找的那个bin的chunk链表非空,那么直接返回链表头即可。这种情况时间复杂度是常数级的。最坏的情况是遍历bins数组中所有的bin。对于一般大小的内存来说,bins数组元素非常少,比如4G空间只需要23个bin就足够了(256 * 2 ^ 23 > 4G),因此也很快能返回结果。总体来说search操作是非常高效的。对于固定大小内存来说,查找时间是常数量级的。
insert
将一个空闲的chunk插入到一个bin所挂载的chunk链表中,同时需要维持chunk链表的升序关系。具体流程是直接将chunk插入到index = chunk size /256 >>2的那个bin中即可。
delete
将一个空闲的chunk从bins中移除。
4. 总结
将内存分块管理,按块进行空间分配和释放。
通过split操作将大内存块分解成用户需要的小内存块。
通过merge操作合并小的内存块,做到内存碎片回收
通过bin这个抽象数据结构实现对空闲块高效管理。
5. 代码分析
1. 代码地址
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/core/common_runtime
2. 数据结构
Chunk
static const int kInvalidChunkHandle = -1;
...
struct Chunk {
size_t size = 0; // Full size of buffer.
// We sometimes give chunks that are larger than needed to reduce
// fragmentation. requested_size keeps track of what the client
// actually wanted so we can understand whether our splitting
// strategy is efficient.
size_t requested_size = 0;
// allocation_id is set to -1 when the chunk is not in use. It is assigned a
// value greater than zero before the chunk is returned from
// AllocateRaw, and this value is unique among values assigned by
// the parent allocator.
int64 allocation_id = -1;
void* ptr = nullptr; // pointer to granted subbuffer.
// If not kInvalidChunkHandle, the memory referred to by 'prev' is directly
// preceding the memory used by this chunk. E.g., It should start
// at 'ptr - prev->size'
ChunkHandle prev = kInvalidChunkHandle;
// If not kInvalidChunkHandle, the memory referred to by 'next' is directly
// following the memory used by this chunk. E.g., It should be at
// 'ptr + size'
ChunkHandle next = kInvalidChunkHandle;
// What bin are we in?
BinNum bin_num = kInvalidBinNum;
bool in_use() const { return allocation_id != -1; }
};
Bin
// A Bin is a collection of similar-sized free chunks.
struct Bin {
// All chunks in this bin have >= bin_size memory.
size_t bin_size = 0;
struct ChunkComparator {
explicit ChunkComparator(BFCAllocator* allocator)
: allocator_(allocator) {}
// Sort first by size and then use pointer address as a tie breaker.
bool operator()(const ChunkHandle ha,
const ChunkHandle hb) const NO_THREAD_SAFETY_ANALYSIS {
const Chunk* a = allocator_->ChunkFromHandle(ha);
const Chunk* b = allocator_->ChunkFromHandle(hb);
if (a->size != b->size) {
return a->size < b->size;
}
return a->ptr < b->ptr;
}
private:
BFCAllocator* allocator_; // The parent allocator
};
typedef std::set<ChunkHandle, ChunkComparator> FreeChunkSet;
// List of free chunks within the bin, sorted by chunk size.
// Chunk * not owned.
FreeChunkSet free_chunks;
Bin(BFCAllocator* allocator, size_t bs)
: bin_size(bs), free_chunks(ChunkComparator(allocator)) {}
};
AllocationRegion
AllocationRegion给一个连续的内存区域做指针到ChunkHandle的映射。
RegionManager
RegionManager聚集了一个或多个AllocationRegion,并提供一个从指针到基础ChunkHandle的间接层,这个间接层可在多个不连续的内存区域进行分配。
3. 分配大小
将每次分配的内存大小调整为kMinAllocationSize的N倍,这样所有内存地址都是很好地按字节对齐了。
// kMinAllocationSize = 256
static const size_t kMinAllocationBits = 8;
static const size_t kMinAllocationSize = 1 << kMinAllocationBits;
...
size_t BFCAllocator::RoundedBytes(size_t bytes) {
size_t rounded_bytes =
(kMinAllocationSize *
((bytes + kMinAllocationSize - 1) / kMinAllocationSize));
DCHECK_EQ(size_t{0}, rounded_bytes % kMinAllocationSize);
return rounded_bytes;
}
4. 初始化bin
typedef int BinNum;
static const int kInvalidBinNum = -1;
static const int kNumBins = 21;
...
// 二进制2^8往左移0,1,2位
// (static_cast<size_t>(256) << 0) = 256
// (static_cast<size_t>(256) << 1) = 512
// (static_cast<size_t>(256) << 2) = 1024
size_t BinNumToSize(BinNum index) {
return static_cast<size_t>(256) << index;
}
...
char bins_space_[sizeof(Bin) * kNumBins];
// Map from bin size to Bin
Bin* BinFromIndex(BinNum index) {
return reinterpret_cast<Bin*>(&(bins_space_[index * sizeof(Bin)]));
}
...
// We create bins to fit all possible ranges that cover the
// memory_limit_ starting from allocations up to 256 bytes to
// allocations up to (and including) the memory limit.
for (BinNum b = 0; b < kNumBins; b++) {
size_t bin_size = BinNumToSize(b);
VLOG(1) << "Creating bin of max chunk size "
<< strings::HumanReadableNumBytes(bin_size);
new (BinFromIndex(b)) Bin(this, bin_size);
CHECK_EQ(BinForSize(bin_size), BinFromIndex(b));
CHECK_EQ(BinForSize(bin_size + 255), BinFromIndex(b));
CHECK_EQ(BinForSize(bin_size * 2 - 1), BinFromIndex(b));
if (b + 1 < kNumBins) {
CHECK_NE(BinForSize(bin_size * 2), BinFromIndex(b));
}
}
5. 查找bin
// 求属于第几个bin
BinNum BinNumForSize(size_t bytes) {
uint64 v = std::max<size_t>(bytes, 256) >> kMinAllocationBits;
int b = std::min(kNumBins - 1, Log2FloorNonZero(v));
return b;
}
// 最高位非零的二进制位数,eg: 0001 0101B 为5
inline int Log2FloorNonZero(uint64 n) {
#if defined(__GNUC__)
return 63 ^ __builtin_clzll(n);
#elif defined(PLATFORM_WINDOWS)
unsigned long index;
_BitScanReverse64(&index, n);
return index;
#else
int r = 0;
while (n > 0) {
r++;
n >>= 1;
}
return r;
#endif
}
6. 查找Chunk
// 先加锁
mutex_lock l(lock_);
void* ptr = FindChunkPtr(bin_num, rounded_bytes, num_bytes);
if (ptr != nullptr) {
return ptr;
}
// FindChunkPtr函数内部
void* BFCAllocator::FindChunkPtr(BinNum bin_num, size_t rounded_bytes,
size_t num_bytes) {
// First identify the first bin that could satisfy rounded_bytes.
for (; bin_num < kNumBins; bin_num++) {
// Start searching from the first bin for the smallest chunk that fits
// rounded_bytes.
Bin* b = BinFromIndex(bin_num);
for (auto citer = b->free_chunks.begin(); citer != b->free_chunks.end();
++citer) {
// 从之前得到的Bin索引开始,查找合适的空闲Chunk:
const BFCAllocator::ChunkHandle h = (*citer);
BFCAllocator::Chunk* chunk = ChunkFromHandle(h);
DCHECK(!chunk->in_use());
if (chunk->size >= rounded_bytes) {
// We found an existing chunk that fits us that wasn't in use, so remove
// it from the free bin structure prior to using.
RemoveFreeChunkIterFromBin(&b->free_chunks, citer);
// If we can break the size of the chunk into two reasonably
// large pieces, do so.
//
// TODO(vrv): What should be the criteria when deciding when
// to split?
// 具体实现后面会分析
if (chunk->size >= rounded_bytes * 2) {
SplitChunk(h, rounded_bytes);
chunk = ChunkFromHandle(h); // Update chunk pointer in case it moved
}
// The requested size of the returned chunk is what the user
// has allocated.
chunk->requested_size = num_bytes;
// Assign a unique id and increment the id counter, marking the
// chunk as being in use.
chunk->allocation_id = next_allocation_id_++;
// Update stats.
++stats_.num_allocs;
stats_.bytes_in_use += chunk->size;
stats_.max_bytes_in_use =
std::max(stats_.max_bytes_in_use, stats_.bytes_in_use);
stats_.max_alloc_size =
std::max<std::size_t>(stats_.max_alloc_size, chunk->size);
VLOG(4) << "Returning: " << chunk->ptr;
if (VLOG_IS_ON(4)) {
LOG(INFO) << "A: " << RenderOccupancy();
}
return chunk->ptr;
}
}
}
return nullptr;
}
7. 拆分Chunk
如果Chunk的大小大于等于申请内存大小的2倍,那么将该Chunk拆分成2个:第一个Chunk的大小等于申请内存大小,第二个Chunk作为它的直接后继。
if (chunk->size >= rounded_bytes * 2) {
SplitChunk(h, rounded_bytes);
chunk = ChunkFromHandle(h); // Update chunk pointer in case it moved
}
void BFCAllocator::SplitChunk(BFCAllocator::ChunkHandle h, size_t num_bytes) {
// Allocate the new chunk before we do any ChunkFromHandle
ChunkHandle h_new_chunk = AllocateChunk();
Chunk* c = ChunkFromHandle(h);
CHECK(!c->in_use() && (c->bin_num == kInvalidBinNum));
// Create a new chunk starting num_bytes after c
BFCAllocator::Chunk* new_chunk = ChunkFromHandle(h_new_chunk);
new_chunk->ptr = static_cast<void*>(static_cast<char*>(c->ptr) + num_bytes);
region_manager_.set_handle(new_chunk->ptr, h_new_chunk);
// Set the new sizes of the chunks.
new_chunk->size = c->size - num_bytes;
c->size = num_bytes;
// The new chunk is not in use.
new_chunk->allocation_id = -1;
// Maintain the pointers.
// c <-> c_neighbor becomes
// c <-> new_chunk <-> c_neighbor
BFCAllocator::ChunkHandle h_neighbor = c->next;
new_chunk->prev = h;
new_chunk->next = h_neighbor;
c->next = h_new_chunk;
if (h_neighbor != kInvalidChunkHandle) {
Chunk* c_neighbor = ChunkFromHandle(h_neighbor);
c_neighbor->prev = h_new_chunk;
}
// Add the newly free chunk to the free bin.
InsertFreeChunkIntoBin(h_new_chunk);
}
8. 回收chunk
加锁,获得ChunkHandle
mutex_lock l(lock_);
BFCAllocator::ChunkHandle h = region_manager_.get_handle(ptr);
FreeAndMaybeCoalesce(h);
FreeAndMaybeCoalesce
void BFCAllocator::FreeAndMaybeCoalesce(BFCAllocator::ChunkHandle h) {
Chunk* c = ChunkFromHandle(h);
CHECK(c->in_use() && (c->bin_num == kInvalidBinNum));
// Mark the chunk as no longer in use
c->allocation_id = -1;
// Updates the stats.
stats_.bytes_in_use -= c->size;
// This chunk is no longer in-use, consider coalescing the chunk
// with adjacent chunks.
ChunkHandle chunk_to_reassign = h;
// If the next chunk is free, coalesce the two
if (c->next != kInvalidChunkHandle) {
Chunk* cnext = ChunkFromHandle(c->next);
if (!cnext->in_use()) {
// VLOG(8) << "Chunk at " << cnext->ptr << " merging with c " <<
// c->ptr;
chunk_to_reassign = h;
// Deletes c->next
RemoveFreeChunkFromBin(c->next);
Merge(h, ChunkFromHandle(h)->next);
}
}
// If the previous chunk is free, coalesce the two
c = ChunkFromHandle(h);
if (c->prev != kInvalidChunkHandle) {
Chunk* cprev = ChunkFromHandle(c->prev);
if (!cprev->in_use()) {
// VLOG(8) << "Chunk at " << c->ptr << " merging into c->prev "
// << cprev->ptr;
chunk_to_reassign = c->prev;
// Deletes c
RemoveFreeChunkFromBin(c->prev);
Merge(ChunkFromHandle(h)->prev, h);
c = ChunkFromHandle(h);
}
}
InsertFreeChunkIntoBin(chunk_to_reassign);
}
Merge
// Merges h1 and h2 when Chunk(h1)->next is h2 and Chunk(h2)->prev is c1.
// We merge Chunk(h2) into Chunk(h1).
void BFCAllocator::Merge(BFCAllocator::ChunkHandle h1,
BFCAllocator::ChunkHandle h2) {
Chunk* c1 = ChunkFromHandle(h1);
Chunk* c2 = ChunkFromHandle(h2);
// We can only merge chunks that are not in use.
CHECK(!c1->in_use() && !c2->in_use());
// c1's prev doesn't change, still points to the same ptr, and is
// still not in use.
// Fix up neighbor pointers
//
// c1 <-> c2 <-> c3 should become
// c1 <-> c3
BFCAllocator::ChunkHandle h3 = c2->next;
c1->next = h3;
CHECK(c2->prev == h1);
if (h3 != kInvalidChunkHandle) {
BFCAllocator::Chunk* c3 = ChunkFromHandle(h3);
c3->prev = h1;
}
// Set the new size
c1->size += c2->size;
DeleteChunk(h2);
}
以上这篇TensorFlow内存管理bfc算法实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持python博客。