首页 > python教程

opencv python图像梯度实例详解

时间:2020-10-19 python教程 查看: 920

这篇文章主要介绍了opencv python图像梯度实例详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

一阶导数与Soble算子

二阶导数与拉普拉斯算子

图像边缘:

Soble算子:

二阶导数:

拉普拉斯算子:

import cv2 as cv
import numpy as np


# 图像梯度(由x,y方向上的偏导数和偏移构成),有一阶导数(sobel算子)和二阶导数(Laplace算子)
# 用于求解图像边缘,一阶的极大值,二阶的零点
# 一阶偏导在图像中为一阶差分,再变成算子(即权值)与图像像素值乘积相加,二阶同理
def sobel_demo(image):
  grad_x = cv.Sobel(image, cv.CV_32F, 1, 0) # 采用Scharr边缘更突出
  grad_y = cv.Sobel(image, cv.CV_32F, 0, 1)

  gradx = cv.convertScaleAbs(grad_x) # 由于算完的图像有正有负,所以对其取绝对值
  grady = cv.convertScaleAbs(grad_y)

  # 计算两个图像的权值和,dst = src1*alpha + src2*beta + gamma
  gradxy = cv.addWeighted(gradx, 0.5, grady, 0.5, 0)

  cv.imshow("gradx", gradx)
  cv.imshow("grady", grady)
  cv.imshow("gradient", gradxy)


def laplace_demo(image): # 二阶导数,边缘更细
  dst = cv.Laplacian(image,cv.CV_32F)
  lpls = cv.convertScaleAbs(dst)
  cv.imshow("laplace_demo", lpls)


def custom_laplace(image):
  # 以下算子与上面的Laplace_demo()是一样的,增强采用np.array([[1, 1, 1], [1, -8, 1], [1, 1, 1]])
  kernel = np.array([[1, 1, 1], [1, -8, 1], [1, 1, 1]])
  dst = cv.filter2D(image, cv.CV_32F, kernel=kernel)
  lpls = cv.convertScaleAbs(dst)
  cv.imshow("custom_laplace", lpls)


def main():
  src = cv.imread("../images/lena.jpg")
  cv.imshow("lena",src)
  # sobel_demo(src)
  laplace_demo(src)
  custom_laplace(src)
  cv.waitKey(0) # 等有键输入或者1000ms后自动将窗口消除,0表示只用键输入结束窗口
  cv.destroyAllWindows() # 关闭所有窗口


if __name__ == '__main__':
  main()

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持python博客。

展开全文
上一篇:有关Tensorflow梯度下降常用的优化方法分享
下一篇:Python 格式化输出_String Formatting_控制小数点位数的实例详解
输入字:
相关知识
Python 实现图片色彩转换案例

我们在看动漫、影视作品中,当人物在回忆过程中,体现出来的画面一般都是黑白或者褐色的。本文将提供将图片色彩转为黑白或者褐色风格的案例详解,感兴趣的小伙伴可以了解一下。

python初学定义函数

这篇文章主要为大家介绍了python的定义函数,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助,希望能够给你带来帮助

图文详解Python如何导入自己编写的py文件

有时候自己写了一个py文件,想要把它导入到另一个py文件里面,所以下面这篇文章主要给大家介绍了关于Python如何导入自己编写的py文件的相关资料,需要的朋友可以参考下

python二分法查找实例代码

二分算法是一种效率比较高的查找算法,其输入的是一个有序的元素列表,如果查找元素包含在列表中,二分查找返回其位置,否则返回NONE,下面这篇文章主要给大家介绍了关于python二分法查找的相关资料,需要的朋友可以参考下