首页 > python教程

利用Python如何制作贪吃蛇及AI版贪吃蛇详解

时间:2020-10-11 python教程 查看: 878

用python制作普通贪吃蛇

哈喽,大家不知道是上午好还是中午好还是下午好还是晚上好!

贪吃蛇,应该是90后小时候的记忆(连我这个00后也不例外),今天,我们就用python这款编程语言来实现贪吃蛇

系统:所有都可以

需导入模块:

  • random
  • pygame
  • pygame.locals
  • sys

下载以上模块指令:

random和sys是Python自带的,我们只需要下载pygame即可

下载pygame:

在开始菜单输入“cmd”回车打开,输入``指令:pip install pygame

苹果电脑需要改成:pip3 install pygame

下载好后,打开python的shell界面,输入import pygame,回车,如果没报错,及代表安装完成。

接下来什么都不说,直接奉上代码(恕我没写注释):

import random
import pygame
import sys
from pygame.locals import *

Snakespeed = 17
Window_Width = 800
Window_Height = 500
Cell_Size = 20 # Width and height of the cells
# Ensuring that the cells fit perfectly in the window. eg if cell size was
# 10 and window width or windowheight were 15 only 1.5 cells would
# fit.
assert Window_Width % Cell_Size == 0, "Window width must be a multiple of cell size."
# Ensuring that only whole integer number of cells fit perfectly in the window.
assert Window_Height % Cell_Size == 0, "Window height must be a multiple of cell size."
Cell_W = int(Window_Width / Cell_Size) # Cell Width
Cell_H = int(Window_Height / Cell_Size) # Cellc Height


White = (255, 255, 255)
Black = (0, 0, 0)
Red = (255, 0, 0) # Defining element colors for the program.
Green = (0, 255, 0)
DARKGreen = (0, 155, 0)
DARKGRAY = (40, 40, 40)
YELLOW = (255, 255, 0)
Red_DARK = (150, 0, 0)
BLUE = (0, 0, 255)
BLUE_DARK = (0, 0, 150)


BGCOLOR = Black # Background color


UP = 'up'
DOWN = 'down' # Defining keyboard keys.
LEFT = 'left'
RIGHT = 'right'

HEAD = 0 # Syntactic sugar: index of the snake's head


def main():
 global SnakespeedCLOCK, DISPLAYSURF, BASICFONT

 pygame.init()
 SnakespeedCLOCK = pygame.time.Clock()
 DISPLAYSURF = pygame.display.set_mode((Window_Width, Window_Height))
 BASICFONT = pygame.font.Font('freesansbold.ttf', 18)
 pygame.display.set_caption('Snake')

 showStartScreen()
 while True:
 runGame()
 showGameOverScreen()


def runGame():
 # Set a random start point.
 startx = random.randint(5, Cell_W - 6)
 starty = random.randint(5, Cell_H - 6)
 wormCoords = [{'x': startx, 'y': starty},
   {'x': startx - 1, 'y': starty},
   {'x': startx - 2, 'y': starty}]
 direction = RIGHT

 # Start the apple in a random place.
 apple = getRandomLocation()

 while True: # main game loop
 for event in pygame.event.get(): # event handling loop
  if event.type == QUIT:
  terminate()
  elif event.type == KEYDOWN:
  if (event.key == K_LEFT) and direction != RIGHT:
   direction = LEFT
  elif (event.key == K_RIGHT) and direction != LEFT:
   direction = RIGHT
  elif (event.key == K_UP) and direction != DOWN:
   direction = UP
  elif (event.key == K_DOWN) and direction != UP:
   direction = DOWN
  elif event.key == K_ESCAPE:
   terminate()

 # check if the Snake has hit itself or the edge
 if wormCoords[HEAD]['x'] == -1 or wormCoords[HEAD]['x'] == Cell_W or wormCoords[HEAD]['y'] == -1 or wormCoords[HEAD]['y'] == Cell_H:
  return # game over
 for wormBody in wormCoords[1:]:
  if wormBody['x'] == wormCoords[HEAD]['x'] and wormBody['y'] == wormCoords[HEAD]['y']:
  return # game over

 # check if Snake has eaten an apply
 if wormCoords[HEAD]['x'] == apple['x'] and wormCoords[HEAD]['y'] == apple['y']:
  # don't remove worm's tail segment
  apple = getRandomLocation() # set a new apple somewhere
 else:
  del wormCoords[-1] # remove worm's tail segment

 # move the worm by adding a segment in the direction it is moving
 if direction == UP:
  newHead = {'x': wormCoords[HEAD]['x'],
   'y': wormCoords[HEAD]['y'] - 1}
 elif direction == DOWN:
  newHead = {'x': wormCoords[HEAD]['x'],
   'y': wormCoords[HEAD]['y'] + 1}
 elif direction == LEFT:
  newHead = {'x': wormCoords[HEAD][
  'x'] - 1, 'y': wormCoords[HEAD]['y']}
 elif direction == RIGHT:
  newHead = {'x': wormCoords[HEAD][
  'x'] + 1, 'y': wormCoords[HEAD]['y']}
 wormCoords.insert(0, newHead)
 DISPLAYSURF.fill(BGCOLOR)
 drawGrid()
 drawWorm(wormCoords)
 drawApple(apple)
 drawScore(len(wormCoords) - 3)
 pygame.display.update()
 SnakespeedCLOCK.tick(Snakespeed)


def drawPressKeyMsg():
 pressKeySurf = BASICFONT.render('Press a key to play.', True, White)
 pressKeyRect = pressKeySurf.get_rect()
 pressKeyRect.topleft = (Window_Width - 200, Window_Height - 30)
 DISPLAYSURF.blit(pressKeySurf, pressKeyRect)


def checkForKeyPress():
 if len(pygame.event.get(QUIT)) > 0:
 terminate()
 keyUpEvents = pygame.event.get(KEYUP)
 if len(keyUpEvents) == 0:
 return None
 if keyUpEvents[0].key == K_ESCAPE:
 terminate()
 return keyUpEvents[0].key


def showStartScreen():
 titleFont = pygame.font.Font('freesansbold.ttf', 100)
 titleSurf1 = titleFont.render('Snake!', True, White, DARKGreen)
 degrees1 = 0
 degrees2 = 0
 while True:
 DISPLAYSURF.fill(BGCOLOR)
 rotatedSurf1 = pygame.transform.rotate(titleSurf1, degrees1)
 rotatedRect1 = rotatedSurf1.get_rect()
 rotatedRect1.center = (Window_Width / 2, Window_Height / 2)
 DISPLAYSURF.blit(rotatedSurf1, rotatedRect1)

 drawPressKeyMsg()

 if checkForKeyPress():
  pygame.event.get() # clear event queue
  return
 pygame.display.update()
 SnakespeedCLOCK.tick(Snakespeed)
 degrees1 += 3 # rotate by 3 degrees each frame
 degrees2 += 7 # rotate by 7 degrees each frame


def terminate():
 pygame.quit()
 sys.exit()


def getRandomLocation():
 return {'x': random.randint(0, Cell_W - 1), 'y': random.randint(0, Cell_H - 1)}


def showGameOverScreen():
 gameOverFont = pygame.font.Font('freesansbold.ttf', 100)
 gameSurf = gameOverFont.render('Game', True, White)
 overSurf = gameOverFont.render('Over', True, White)
 gameRect = gameSurf.get_rect()
 overRect = overSurf.get_rect()
 gameRect.midtop = (Window_Width / 2, 10)
 overRect.midtop = (Window_Width / 2, gameRect.height + 10 + 25)

 DISPLAYSURF.blit(gameSurf, gameRect)
 DISPLAYSURF.blit(overSurf, overRect)
 drawPressKeyMsg()
 pygame.display.update()
 pygame.time.wait(500)
 checkForKeyPress() # clear out any key presses in the event queue

 while True:
 if checkForKeyPress():
  pygame.event.get() # clear event queue
  return


def drawScore(score):
 scoreSurf = BASICFONT.render('Score: %s' % (score), True, White)
 scoreRect = scoreSurf.get_rect()
 scoreRect.topleft = (Window_Width - 120, 10)
 DISPLAYSURF.blit(scoreSurf, scoreRect)


def drawWorm(wormCoords):
 for coord in wormCoords:
 x = coord['x'] * Cell_Size
 y = coord['y'] * Cell_Size
 wormSegmentRect = pygame.Rect(x, y, Cell_Size, Cell_Size)
 pygame.draw.rect(DISPLAYSURF, DARKGreen, wormSegmentRect)
 wormInnerSegmentRect = pygame.Rect(
  x + 4, y + 4, Cell_Size - 8, Cell_Size - 8)
 pygame.draw.rect(DISPLAYSURF, Green, wormInnerSegmentRect)


def drawApple(coord):
 x = coord['x'] * Cell_Size
 y = coord['y'] * Cell_Size
 appleRect = pygame.Rect(x, y, Cell_Size, Cell_Size)
 pygame.draw.rect(DISPLAYSURF, Red, appleRect)


def drawGrid():
 for x in range(0, Window_Width, Cell_Size): # draw vertical lines
 pygame.draw.line(DISPLAYSURF, DARKGRAY, (x, 0), (x, Window_Height))
 for y in range(0, Window_Height, Cell_Size): # draw horizontal lines
 pygame.draw.line(DISPLAYSURF, DARKGRAY, (0, y), (Window_Width, y))


if __name__ == '__main__':
 try:
 main()
 except SystemExit:
 pass

以上是贪吃蛇的全部代码,接下来,我们来制作AI版贪吃蛇。

用python制作AI版贪吃蛇

AI版贪吃蛇,即让系统自己玩贪吃蛇,一句话:自己玩自己。下面开始:

系统:什么都可以

需导入的模块:

  • pygame
  • sys
  • time
  • random

如果你已经下载好了pygame,即可直接开始。

还是什么都不说,直接奉上代码(这次有注释)

#coding: utf-8
import pygame,sys,time,random
from pygame.locals import *
# 定义颜色变量
redColour = pygame.Color(255,0,0)
blackColour = pygame.Color(0,0,0)
whiteColour = pygame.Color(255,255,255)
greenColour = pygame.Color(0,255,0)
headColour = pygame.Color(0,119,255)

#注意:在下面所有的除法中,为了防止pygame输出偏差,必须取除数(//)而不是单纯除法(/)

# 蛇运动的场地长宽,因为第0行,HEIGHT行,第0列,WIDTH列为围墙,所以实际是13*13
HEIGHT = 15
WIDTH = 15
FIELD_SIZE = HEIGHT * WIDTH
# 蛇头位于snake数组的第一个元素
HEAD = 0

# 用数字代表不同的对象,由于运动时矩阵上每个格子会处理成到达食物的路径长度,
# 因此这三个变量间需要有足够大的间隔(>HEIGHT*WIDTH)来互相区分
# 小写一般是坐标,大写代表常量
FOOD = 0
UNDEFINED = (HEIGHT + 1) * (WIDTH + 1)
SNAKE = 2 * UNDEFINED

# 由于snake是一维数组,所以对应元素直接加上以下值就表示向四个方向移动
LEFT = -1
RIGHT = 1
UP = -WIDTH#一维数组,所以需要整个宽度都加上才能表示上下移动
DOWN = WIDTH 

# 错误码
ERR = -2333

# 用一维数组来表示二维的东西
# board表示蛇运动的矩形场地
# 初始化蛇头在(1,1)的地方
# 初始蛇长度为1
board = [0] * FIELD_SIZE #[0,0,0,……]
snake = [0] * (FIELD_SIZE+1)
snake[HEAD] = 1*WIDTH+1
snake_size = 1
# 与上面变量对应的临时变量,蛇试探性地移动时使用
tmpboard = [0] * FIELD_SIZE
tmpsnake = [0] * (FIELD_SIZE+1)
tmpsnake[HEAD] = 1*WIDTH+1
tmpsnake_size = 1

# food:食物位置初始在(4, 7)
# best_move: 运动方向
food = 4 * WIDTH + 7
best_move = ERR

# 运动方向数组,游戏分数(蛇长)
mov = [LEFT, RIGHT, UP, DOWN]           
score = 1 

# 检查一个cell有没有被蛇身覆盖,没有覆盖则为free,返回true
def is_cell_free(idx, psize, psnake):
 return not (idx in psnake[:psize]) 

# 检查某个位置idx是否可向move方向运动
def is_move_possible(idx, move):
 flag = False
 if move == LEFT:
  #因为实际范围是13*13,[1,13]*[1,13],所以idx为1时不能往左跑,此时取余为1所以>1
  flag = True if idx%WIDTH > 1 else False
 elif move == RIGHT:
  #这里的<WIDTH-2跟上面是一样的道理
  flag = True if idx%WIDTH < (WIDTH-2) else False
 elif move == UP:
  #这里向上的判断画图很好理解,因为在[1,13]*[1,13]的实际运动范围外,还有个
  #大框是围墙,就是之前说的那几个行列,下面判断向下运动的条件也是类似的
  flag = True if idx > (2*WIDTH-1) else False
 elif move == DOWN:
  flag = True if idx < (FIELD_SIZE-2*WIDTH) else False
 return flag
# 重置board
# board_BFS后,UNDEFINED值都变为了到达食物的路径长度
# 如需要还原,则要重置它
def board_reset(psnake, psize, pboard):
 for i in range(FIELD_SIZE):
  if i == food:
   pboard[i] = FOOD
  elif is_cell_free(i, psize, psnake): # 该位置为空
   pboard[i] = UNDEFINED
  else: # 该位置为蛇身
   pboard[i] = SNAKE

# 广度优先搜索遍历整个board,
# 计算出board中每个非SNAKE元素到达食物的路径长度
def board_BFS(pfood, psnake, pboard):
 queue = []
 queue.append(pfood)
 inqueue = [0] * FIELD_SIZE
 found = False
 # while循环结束后,除了蛇的身体,
 # 其它每个方格中的数字为从它到食物的曼哈顿间距
 while len(queue)!=0: 
  idx = queue.pop(0)#初始时idx是食物的坐标 
  if inqueue[idx] == 1: continue
  inqueue[idx] = 1
  for i in range(4):#左右上下
   if is_move_possible(idx, mov[i]):
    if idx + mov[i] == psnake[HEAD]:
     found = True
    if pboard[idx+mov[i]] < SNAKE: # 如果该点不是蛇的身体
     if pboard[idx+mov[i]] > pboard[idx]+1:#小于的时候不管,不然会覆盖已有的路径数据
      pboard[idx+mov[i]] = pboard[idx] + 1
     if inqueue[idx+mov[i]] == 0:
      queue.append(idx+mov[i])
 return found

# 从蛇头开始,根据board中元素值,
# 从蛇头周围4个领域点中选择最短路径
def choose_shortest_safe_move(psnake, pboard):
 best_move = ERR
 min = SNAKE
 for i in range(4):
  if is_move_possible(psnake[HEAD], mov[i]) and pboard[psnake[HEAD]+mov[i]]<min:
   #这里判断最小和下面的函数判断最大,都是先赋值,再循环互相比较
   min = pboard[psnake[HEAD]+mov[i]]
   best_move = mov[i]
 return best_move

# 从蛇头开始,根据board中元素值,
# 从蛇头周围4个领域点中选择最远路径
def choose_longest_safe_move(psnake, pboard):
 best_move = ERR
 max = -1
 for i in range(4):
  if is_move_possible(psnake[HEAD], mov[i]) and pboard[psnake[HEAD]+mov[i]]<UNDEFINED and pboard[psnake[HEAD]+mov[i]]>max:
   max = pboard[psnake[HEAD]+mov[i]]
   best_move = mov[i]
 return best_move

# 检查是否可以追着蛇尾运动,即蛇头和蛇尾间是有路径的
# 为的是避免蛇头陷入死路
# 虚拟操作,在tmpboard,tmpsnake中进行
def is_tail_inside():
 global tmpboard, tmpsnake, food, tmpsnake_size
 tmpboard[tmpsnake[tmpsnake_size-1]] = 0 # 虚拟地将蛇尾变为食物(因为是虚拟的,所以在tmpsnake,tmpboard中进行)
 tmpboard[food] = SNAKE # 放置食物的地方,看成蛇身
 result = board_BFS(tmpsnake[tmpsnake_size-1], tmpsnake, tmpboard) # 求得每个位置到蛇尾的路径长度
 for i in range(4): # 如果蛇头和蛇尾紧挨着,则返回False。即不能follow_tail,追着蛇尾运动了
  if is_move_possible(tmpsnake[HEAD], mov[i]) and tmpsnake[HEAD]+mov[i]==tmpsnake[tmpsnake_size-1] and tmpsnake_size>3:
   result = False
 return result

# 让蛇头朝着蛇尾运行一步
# 不管蛇身阻挡,朝蛇尾方向运行
def follow_tail():
 global tmpboard, tmpsnake, food, tmpsnake_size
 tmpsnake_size = snake_size
 tmpsnake = snake[:]
 board_reset(tmpsnake, tmpsnake_size, tmpboard) # 重置虚拟board
 tmpboard[tmpsnake[tmpsnake_size-1]] = FOOD # 让蛇尾成为食物
 tmpboard[food] = SNAKE # 让食物的地方变成蛇身
 board_BFS(tmpsnake[tmpsnake_size-1], tmpsnake, tmpboard) # 求得各个位置到达蛇尾的路径长度
 tmpboard[tmpsnake[tmpsnake_size-1]] = SNAKE # 还原蛇尾
 return choose_longest_safe_move(tmpsnake, tmpboard) # 返回运行方向(让蛇头运动1步)

# 在各种方案都不行时,随便找一个可行的方向来走(1步),
def any_possible_move():
 global food , snake, snake_size, board
 best_move = ERR
 board_reset(snake, snake_size, board)
 board_BFS(food, snake, board)
 min = SNAKE

 for i in range(4):
  if is_move_possible(snake[HEAD], mov[i]) and board[snake[HEAD]+mov[i]]<min:
   min = board[snake[HEAD]+mov[i]]
   best_move = mov[i]
 return best_move

#转换数组函数
def shift_array(arr, size):
 for i in range(size, 0, -1):
  arr[i] = arr[i-1]

def new_food():#随机函数生成新的食物
 global food, snake_size
 cell_free = False
 while not cell_free:
  w = random.randint(1, WIDTH-2)
  h = random.randint(1, HEIGHT-2)
  food = WIDTH*h + w
  cell_free = is_cell_free(food, snake_size, snake)
 pygame.draw.rect(playSurface,redColour,Rect(18*(food//WIDTH), 18*(food%WIDTH),18,18))

# 真正的蛇在这个函数中,朝pbest_move走1步
def make_move(pbest_move):
 global snake, board, snake_size, score
 shift_array(snake, snake_size)
 snake[HEAD] += pbest_move
 p = snake[HEAD]
 for body in snake:#画蛇,身体,头,尾
  pygame.draw.rect(playSurface,whiteColour,Rect(18*(body//WIDTH), 18*(body%WIDTH),18,18))
 pygame.draw.rect(playSurface,greenColour,Rect(18*(snake[snake_size-1]//WIDTH),18*(snake[snake_size-1]%WIDTH),18,18))
 pygame.draw.rect(playSurface,headColour,Rect(18*(p//WIDTH), 18*(p%WIDTH),18,18))
 #下面一行是把初始情况会出现的第一个白块bug填掉
 pygame.draw.rect(playSurface,(255,255,0),Rect(0,0,18,18))
 # 刷新pygame显示层
 pygame.display.flip() 

 # 如果新加入的蛇头就是食物的位置
 # 蛇长加1,产生新的食物,重置board(因为原来那些路径长度已经用不上了)
 if snake[HEAD] == food:
  board[snake[HEAD]] = SNAKE # 新的蛇头
  snake_size += 1
  score += 1
  if snake_size < FIELD_SIZE: new_food()
 else: # 如果新加入的蛇头不是食物的位置
  board[snake[HEAD]] = SNAKE # 新的蛇头
  board[snake[snake_size]] = UNDEFINED # 蛇尾变为UNDEFINED,黑色
  pygame.draw.rect(playSurface,blackColour,Rect(18*(snake[snake_size]//WIDTH),18*(snake[snake_size]%WIDTH),18,18))
  # 刷新pygame显示层
  pygame.display.flip() 

# 虚拟地运行一次,然后在调用处检查这次运行可否可行
# 可行才真实运行。
# 虚拟运行吃到食物后,得到虚拟下蛇在board的位置
def virtual_shortest_move():
 global snake, board, snake_size, tmpsnake, tmpboard, tmpsnake_size, food
 tmpsnake_size = snake_size
 tmpsnake = snake[:] # 如果直接tmpsnake=snake,则两者指向同一处内存
 tmpboard = board[:] # board中已经是各位置到达食物的路径长度了,不用再计算
 board_reset(tmpsnake, tmpsnake_size, tmpboard)

 food_eated = False
 while not food_eated:
  board_BFS(food, tmpsnake, tmpboard) 
  move = choose_shortest_safe_move(tmpsnake, tmpboard)
  shift_array(tmpsnake, tmpsnake_size)
  tmpsnake[HEAD] += move # 在蛇头前加入一个新的位置
  # 如果新加入的蛇头的位置正好是食物的位置
  # 则长度加1,重置board,食物那个位置变为蛇的一部分(SNAKE)
  if tmpsnake[HEAD] == food:
   tmpsnake_size += 1
   board_reset(tmpsnake, tmpsnake_size, tmpboard) # 虚拟运行后,蛇在board的位置
   tmpboard[food] = SNAKE
   food_eated = True
  else: # 如果蛇头不是食物的位置,则新加入的位置为蛇头,最后一个变为空格
   tmpboard[tmpsnake[HEAD]] = SNAKE
   tmpboard[tmpsnake[tmpsnake_size]] = UNDEFINED

# 如果蛇与食物间有路径,则调用本函数
def find_safe_way():
 global snake, board
 safe_move = ERR
 # 虚拟地运行一次,因为已经确保蛇与食物间有路径,所以执行有效
 # 运行后得到虚拟下蛇在board中的位置,即tmpboard
 virtual_shortest_move() # 该函数唯一调用处
 if is_tail_inside(): # 如果虚拟运行后,蛇头蛇尾间有通路,则选最短路运行(1步)
  return choose_shortest_safe_move(snake, board)
 safe_move = follow_tail() # 否则虚拟地follow_tail 1步,如果可以做到,返回true
 return safe_move


#初始化pygame
pygame.init()
#定义一个变量用来控制游戏速度
fpsClock = pygame.time.Clock()
# 创建pygame显示层
playSurface = pygame.display.set_mode((270,270))
pygame.display.set_caption('贪吃蛇')
# 绘制pygame显示层
playSurface.fill(blackColour)
#初始化食物
pygame.draw.rect(playSurface,redColour,Rect(18*(food//WIDTH), 18*(food%WIDTH),18,18))

while True:
 for event in pygame.event.get():#循环监听键盘和退出事件
  if event.type == QUIT:#如果点了关闭
   print(score)#游戏结束后打印分数
   pygame.quit()
   sys.exit()
  elif event.type == KEYDOWN:#如果esc键被按下
   if event.key==K_ESCAPE:
    print(score)#游戏结束后打印分数
    pygame.quit()
    sys.exit()
 # 刷新pygame显示层
 pygame.display.flip() 
 #画围墙,255,255,0是黄色,边框是36是因为,pygame矩形是以边为初始,向四周填充边框
 pygame.draw.rect(playSurface,(255,255,0),Rect(0,0,270,270),36)
 # 重置距离
 board_reset(snake, snake_size, board)
 # 如果蛇可以吃到食物,board_BFS返回true
 # 并且board中除了蛇身(=SNAKE),其它的元素值表示从该点运动到食物的最短路径长
 if board_BFS(food, snake, board):
  best_move = find_safe_way() # find_safe_way的唯一调用处
 else:
  best_move = follow_tail()
 if best_move == ERR:
  best_move = any_possible_move()
 # 上面一次思考,只得出一个方向,运行一步
 if best_move != ERR: make_move(best_move)
 else:
  print(score)#游戏结束后打印分数
  break
 # 控制游戏速度
 fpsClock.tick(20)#20看上去速度正好

ok,这就是今天的全部内容866!

到此这篇关于利用Python如何制作贪吃蛇及AI版贪吃蛇的文章就介绍到这了,更多相关Python制作贪吃蛇及AI版贪吃蛇内容请搜索python博客以前的文章或继续浏览下面的相关文章希望大家以后多多支持python博客!

展开全文
上一篇:Django静态文件加载失败解决方案
下一篇:anaconda3安装及jupyter环境配置全教程
输入字:
相关知识
Python 实现图片色彩转换案例

我们在看动漫、影视作品中,当人物在回忆过程中,体现出来的画面一般都是黑白或者褐色的。本文将提供将图片色彩转为黑白或者褐色风格的案例详解,感兴趣的小伙伴可以了解一下。

python初学定义函数

这篇文章主要为大家介绍了python的定义函数,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助,希望能够给你带来帮助

图文详解Python如何导入自己编写的py文件

有时候自己写了一个py文件,想要把它导入到另一个py文件里面,所以下面这篇文章主要给大家介绍了关于Python如何导入自己编写的py文件的相关资料,需要的朋友可以参考下

python二分法查找实例代码

二分算法是一种效率比较高的查找算法,其输入的是一个有序的元素列表,如果查找元素包含在列表中,二分查找返回其位置,否则返回NONE,下面这篇文章主要给大家介绍了关于python二分法查找的相关资料,需要的朋友可以参考下