首页 > python教程

Pytorch生成随机数Tensor的方法汇总

时间:2020-09-25 python教程 查看: 1207

在使用PyTorch做实验时经常会用到生成随机数Tensor的方法,比如:

  • torch.rand()
  • torch.randn()
  • torch.normal()
  • torch.linespace()

均匀分布

torch.rand(*sizes, out=None) → Tensor

返回一个张量,包含了从区间[0, 1)的均匀分布中抽取的一组随机数。张量的形状由参数sizes定义。

参数:

sizes (int…) - 整数序列,定义了输出张量的形状
out (Tensor, optinal) - 结果张量

torch.rand(2, 3)
[[0.0836 0.6151 0.6958],
 [0.6998 0.2560 0.0139]]
[torch.FloatTensor of size 2x3]

标准正态分布

torch.randn(*sizes, out=None) → Tensor

返回一个张量,包含了从标准正态分布(均值为0,方差为1,即高斯白噪声)中抽取的一组随机数。张量的形状由参数sizes定义。

参数:

sizes (int…) - 整数序列,定义了输出张量的形状
out (Tensor, optinal) - 结果张量

torch.randn(2, 3)
0.5419 0.1594 -0.0413
-2.7937 0.9534 0.4561
[torch.FloatTensor of size 2x3]

离散正态分布

torch.normal(means, std, out=None) → → Tensor

返回一个张量,包含了从指定均值means和标准差std的离散正态分布中抽取的一组随机数。

标准差std是一个张量,包含每个输出元素相关的正态分布标准差。

参数:

means (float, optional) - 均值
std (Tensor) - 标准差
out (Tensor) - 输出张量

torch.normal(mean=0.5, std=torch.arange(1, 6))
-0.1505
-1.2949
-4.4880
-0.5697
-0.8996
[torch.FloatTensor of size 5]

线性间距向量

torch.linspace(start, end, steps=100, out=None) → Tensor

返回一个1维张量,包含在区间start和end上均匀间隔的step个点。

输出张量的长度由steps决定。

参数:

start (float) - 区间的起始点
end (float) - 区间的终点
steps (int) - 在start和end间生成的样本数
out (Tensor, optional) - 结果张量

torch.linspace(3, 10, steps=5)
3.0000
4.7500
6.5000
8.2500
10.0000
[torch.FloatTensor of size 5]

到此这篇关于Pytorch生成随机数Tensor的方法汇总的文章就介绍到这了,更多相关Pytorch生成随机数Tensor内容请搜索python博客以前的文章或继续浏览下面的相关文章希望大家以后多多支持python博客!

展开全文
上一篇:python语音识别指南终极版(有这一篇足矣)
下一篇:pytorch使用horovod多gpu训练的实现
输入字:
相关知识
Python 实现图片色彩转换案例

我们在看动漫、影视作品中,当人物在回忆过程中,体现出来的画面一般都是黑白或者褐色的。本文将提供将图片色彩转为黑白或者褐色风格的案例详解,感兴趣的小伙伴可以了解一下。

python初学定义函数

这篇文章主要为大家介绍了python的定义函数,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助,希望能够给你带来帮助

图文详解Python如何导入自己编写的py文件

有时候自己写了一个py文件,想要把它导入到另一个py文件里面,所以下面这篇文章主要给大家介绍了关于Python如何导入自己编写的py文件的相关资料,需要的朋友可以参考下

python二分法查找实例代码

二分算法是一种效率比较高的查找算法,其输入的是一个有序的元素列表,如果查找元素包含在列表中,二分查找返回其位置,否则返回NONE,下面这篇文章主要给大家介绍了关于python二分法查找的相关资料,需要的朋友可以参考下