时间:2020-09-21 python教程 查看: 1142
我就废话不多说了,大家还是直接看代码吧!
# 利用sklearn自建评价函数
from sklearn.model_selection import train_test_split
from sklearn.metrics import roc_auc_score
from keras.callbacks import Callback
class RocAucEvaluation(Callback):
def __init__(self, validation_data=(), interval=1):
super(Callback, self).__init__()
self.interval = interval
self.x_val,self.y_val = validation_data
def on_epoch_end(self, epoch, log={}):
if epoch % self.interval == 0:
y_pred = self.model.predict(self.x_val, verbose=0)
score = roc_auc_score(self.y_val, y_pred)
print('\n ROC_AUC - epoch:%d - score:%.6f \n' % (epoch+1, score))
x_train,y_train,x_label,y_label = train_test_split(train_feature, train_label, train_size=0.95, random_state=233)
RocAuc = RocAucEvaluation(validation_data=(y_train,y_label), interval=1)
hist = model.fit(x_train, x_label, batch_size=batch_size, epochs=epochs, validation_data=(y_train, y_label), callbacks=[RocAuc], verbose=2)
补充知识:keras用auc做metrics以及早停
我就废话不多说了,大家还是直接看代码吧!
import tensorflow as tf
from sklearn.metrics import roc_auc_score
def auroc(y_true, y_pred):
return tf.py_func(roc_auc_score, (y_true, y_pred), tf.double)
# Build Model...
model.compile(loss='categorical_crossentropy', optimizer='adam',metrics=['accuracy', auroc])
完整例子:
def auc(y_true, y_pred):
auc = tf.metrics.auc(y_true, y_pred)[1]
K.get_session().run(tf.local_variables_initializer())
return auc
def create_model_nn(in_dim,layer_size=200):
model = Sequential()
model.add(Dense(layer_size,input_dim=in_dim, kernel_initializer='normal'))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(Dropout(0.3))
for i in range(2):
model.add(Dense(layer_size))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(Dropout(0.3))
model.add(Dense(1, activation='sigmoid'))
adam = optimizers.Adam(lr=0.01)
model.compile(optimizer=adam,loss='binary_crossentropy',metrics = [auc])
return model
####cv train
folds = StratifiedKFold(n_splits=5, shuffle=False, random_state=15)
oof = np.zeros(len(df_train))
predictions = np.zeros(len(df_test))
for fold_, (trn_idx, val_idx) in enumerate(folds.split(df_train.values, target2.values)):
print("fold n°{}".format(fold_))
X_train = df_train.iloc[trn_idx][features]
y_train = target2.iloc[trn_idx]
X_valid = df_train.iloc[val_idx][features]
y_valid = target2.iloc[val_idx]
model_nn = create_model_nn(X_train.shape[1])
callback = EarlyStopping(monitor="val_auc", patience=50, verbose=0, mode='max')
history = model_nn.fit(X_train, y_train, validation_data = (X_valid ,y_valid),epochs=1000,batch_size=64,verbose=0,callbacks=[callback])
print('\n Validation Max score : {}'.format(np.max(history.history['val_auc'])))
predictions += model_nn.predict(df_test[features]).ravel()/folds.n_splits
以上这篇Keras 利用sklearn的ROC-AUC建立评价函数详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持python博客。