首页 > python教程

使用Keras画神经网络准确性图教程

时间:2020-09-18 python教程 查看: 1021

1.在搭建网络开始时,会调用到 keras.models的Sequential()方法,返回一个model参数表示模型

2.model参数里面有个fit()方法,用于把训练集传进网络。fit()返回一个参数,该参数包含训练集和验证集的准确性acc和错误值loss,用这些数据画成图表即可。

如:

history=model.fit(x_train, y_train, batch_size=32, epochs=5, validation_split=0.25) #获取数据

#########画图
acc = history.history['acc']  #获取训练集准确性数据
val_acc = history.history['val_acc'] #获取验证集准确性数据
loss = history.history['loss']   #获取训练集错误值数据
val_loss = history.history['val_loss'] #获取验证集错误值数据
epochs = range(1,len(acc)+1)
plt.plot(epochs,acc,'bo',label='Trainning acc')  #以epochs为横坐标,以训练集准确性为纵坐标
plt.plot(epochs,val_acc,'b',label='Vaildation acc') #以epochs为横坐标,以验证集准确性为纵坐标
plt.legend() #绘制图例,即标明图中的线段代表何种含义

plt.figure() #创建一个新的图表
plt.plot(epochs,loss,'bo',label='Trainning loss')
plt.plot(epochs,val_loss,'b',label='Vaildation loss')
plt.legend() ##绘制图例,即标明图中的线段代表何种含义

plt.show() #显示所有图表

得到效果:

完整代码:

import keras
from keras.datasets import mnist
from keras.layers import Conv2D, MaxPool2D, Dense, Flatten,Dropout
from keras.models import Sequential
import matplotlib.pyplot as plt

(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = x_train.reshape(-1, 28, 28, 1)
x_test = x_test.reshape(-1, 28, 28, 1)
x_train = x_train / 255.
x_test = x_test / 255.

y_train = keras.utils.to_categorical(y_train)
y_test = keras.utils.to_categorical(y_test)

model = Sequential()
model.add(Conv2D(20,(5,5),strides=(1,1),input_shape=(28,28,1),padding='valid',activation='relu',kernel_initializer='uniform'))
model.add(MaxPool2D(pool_size=(2,2),strides=(2,2)))
model.add(Conv2D(64,(5,5),strides=(1,1),padding='valid',activation='relu',kernel_initializer='uniform'))
model.add(MaxPool2D(pool_size=(2,2),strides=(2,2)))
model.add(Flatten())
model.add(Dense(500,activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(10,activation='softmax'))
model.compile('sgd', loss='categorical_crossentropy', metrics=['accuracy']) #随机梯度下降

history=model.fit(x_train, y_train, batch_size=32, epochs=5, validation_split=0.25) #获取数据

#########画图
acc = history.history['acc']  #获取训练集准确性数据
val_acc = history.history['val_acc'] #获取验证集准确性数据
loss = history.history['loss']   #获取训练集错误值数据
val_loss = history.history['val_loss'] #获取验证集错误值数据
epochs = range(1,len(acc)+1)
plt.plot(epochs,acc,'bo',label='Trainning acc')  #以epochs为横坐标,以训练集准确性为纵坐标
plt.plot(epochs,val_acc,'b',label='Vaildation acc') #以epochs为横坐标,以验证集准确性为纵坐标
plt.legend() #绘制图例,即标明图中的线段代表何种含义

plt.figure() #创建一个新的图表
plt.plot(epochs,loss,'bo',label='Trainning loss')
plt.plot(epochs,val_loss,'b',label='Vaildation loss')
plt.legend() ##绘制图例,即标明图中的线段代表何种含义

以上这篇使用Keras画神经网络准确性图教程就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持python博客。

展开全文
上一篇:利用python中的matplotlib打印混淆矩阵实例
下一篇:Python Tkinter图形工具使用方法及实例解析
输入字:
相关知识
Python 实现图片色彩转换案例

我们在看动漫、影视作品中,当人物在回忆过程中,体现出来的画面一般都是黑白或者褐色的。本文将提供将图片色彩转为黑白或者褐色风格的案例详解,感兴趣的小伙伴可以了解一下。

python初学定义函数

这篇文章主要为大家介绍了python的定义函数,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助,希望能够给你带来帮助

图文详解Python如何导入自己编写的py文件

有时候自己写了一个py文件,想要把它导入到另一个py文件里面,所以下面这篇文章主要给大家介绍了关于Python如何导入自己编写的py文件的相关资料,需要的朋友可以参考下

python二分法查找实例代码

二分算法是一种效率比较高的查找算法,其输入的是一个有序的元素列表,如果查找元素包含在列表中,二分查找返回其位置,否则返回NONE,下面这篇文章主要给大家介绍了关于python二分法查找的相关资料,需要的朋友可以参考下