首页 > python教程

解决Alexnet训练模型在每个epoch中准确率和loss都会一升一降问题

时间:2020-09-17 python教程 查看: 1173

遇到的问题

当时自己在使用Alexnet训练图像分类问题时,会出现损失在一个epoch中增加,换做下一个epoch时loss会骤然降低,一开始这个问题没有一点头绪,我数据也打乱了,使用的是tf.train.shuffle_batch

在capacity中设置一个值,比如是1000吧,每次取一千个数据后将这一千个数据打乱,本次使用的数据集就是每个种类1000多,而我加载数据时是一类一类加载的,这就造成了每一批次的开始可以跟前一类数据做打乱处理,但是在中间数据并不能达到充分的shuffle

解决问题

在加载数据集的时候用numpy中的shuffle将数据集充分的打乱后在读入tfrecord中,之后读取的时候使用tf.tain.shuffle_batch和使用tf.train.batch就没有区别了。另外capacity这个数值不益设置过大,会对自己的电脑造成压力。

补充知识:MATLAB中使用AlexNet、VGG、GoogLeNet进行迁移学习

直接贴代码,具体用法见注释:

clc;clear;

net = alexnet; %加载在ImageNet上预训练的网络模型
imageInputSize = [227 227 3];
%加载图像
allImages = imageDatastore('.\data227Alexnet',...
 'IncludeSubfolders',true,...
 'LabelSource','foldernames');
 %划分训练集和验证集
 [training_set,validation_set] = splitEachLabel(allImages,0.7,'randomized');
 %由于原始网络全连接层1000个输出,显然不适用于我们的分类任务,因此在这里替换
layersTransfer = net.Layers(1:end-3);
categories(training_set.Labels)
numClasses = numel(categories(training_set.Labels));
%新的网络
layers = [
 layersTransfer
 fullyConnectedLayer(numClasses,'Name', 'fc','WeightLearnRateFactor',1,'BiasLearnRateFactor',1)
 softmaxLayer('Name', 'softmax')
 classificationLayer('Name', 'classOutput')];

lgraph = layerGraph(layers);
plot(lgraph)
%对数据集进行扩增
augmented_training_set = augmentedImageSource(imageInputSize,training_set);

opts = trainingOptions('adam', ...
 'MiniBatchSize', 32,... % mini batch size, limited by GPU RAM, default 100 on Titan, 500 on P6000
 'InitialLearnRate', 1e-4,... % fixed learning rate
 'LearnRateSchedule','piecewise',...
 'LearnRateDropFactor',0.25,...
 'LearnRateDropPeriod',10,...
 'L2Regularization', 1e-4,... constraint
 'MaxEpochs',20,..
 'ExecutionEnvironment', 'gpu',...
 'ValidationData', validation_set,...
 'ValidationFrequency',80,...
 'ValidationPatience',8,...
 'Plots', 'training-progress')

net = trainNetwork(augmented_training_set, lgraph, opts);

save Alex_Public_32.mat net

[predLabels,predScores] = classify(net, validation_set);
plotconfusion(validation_set.Labels, predLabels)
PerItemAccuracy = mean(predLabels == validation_set.Labels);
title(['overall per image accuracy ',num2str(round(100*PerItemAccuracy)),'%'])

MATLAB中训练神经网络一个非常大的优势就是训练过程中各项指标的可视化,并且最终也会生成一个混淆矩阵显示验证集的结果。

以上这篇解决Alexnet训练模型在每个epoch中准确率和loss都会一升一降问题就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持python博客。

展开全文
上一篇:Java如何基于wsimport调用wcf接口
下一篇:Tensorflow之MNIST CNN实现并保存、加载模型
输入字:
相关知识
Python 实现图片色彩转换案例

我们在看动漫、影视作品中,当人物在回忆过程中,体现出来的画面一般都是黑白或者褐色的。本文将提供将图片色彩转为黑白或者褐色风格的案例详解,感兴趣的小伙伴可以了解一下。

python初学定义函数

这篇文章主要为大家介绍了python的定义函数,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助,希望能够给你带来帮助

图文详解Python如何导入自己编写的py文件

有时候自己写了一个py文件,想要把它导入到另一个py文件里面,所以下面这篇文章主要给大家介绍了关于Python如何导入自己编写的py文件的相关资料,需要的朋友可以参考下

python二分法查找实例代码

二分算法是一种效率比较高的查找算法,其输入的是一个有序的元素列表,如果查找元素包含在列表中,二分查找返回其位置,否则返回NONE,下面这篇文章主要给大家介绍了关于python二分法查找的相关资料,需要的朋友可以参考下